BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10972823)

  • 1. Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties.
    Sinha K; Box M; Lalli G; Schiavo G; Schneider H; Groves M; Siligardi G; Fairweather N
    Mol Microbiol; 2000 Sep; 37(5):1041-51. PubMed ID: 10972823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin.
    Louch HA; Buczko ES; Woody MA; Venable RM; Vann WF
    Biochemistry; 2002 Nov; 41(46):13644-52. PubMed ID: 12427026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments.
    Ovsepian SV; Bodeker M; O'Leary VB; Lawrence GW; Oliver Dolly J
    Brain Struct Funct; 2015; 220(3):1825-38. PubMed ID: 25665801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of the ganglioside binding activity of the tetanus toxin HC fragment destroys immunogenicity: implications for development of novel tetanus vaccines.
    Qazi O; Sesardic D; Tierney R; Söderbäck Z; Crane D; Bolgiano B; Fairweather N
    Infect Immun; 2006 Aug; 74(8):4884-91. PubMed ID: 16861677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin.
    Stoeckel K; Schwab M; Thoenen H
    Brain Res; 1977 Aug; 132(2):273-85. PubMed ID: 70259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for tetanus toxin coreceptor interactions.
    Chen C; Baldwin MR; Barbieri JT
    Biochemistry; 2008 Jul; 47(27):7179-86. PubMed ID: 18543947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand.
    Shapiro RE; Specht CD; Collins BE; Woods AS; Cotter RJ; Schnaar RL
    J Biol Chem; 1997 Nov; 272(48):30380-6. PubMed ID: 9374528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding.
    Emsley P; Fotinou C; Black I; Fairweather NF; Charles IG; Watts C; Hewitt E; Isaacs NW
    J Biol Chem; 2000 Mar; 275(12):8889-94. PubMed ID: 10722735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of tetanus toxin fragment C binding to ganglioside G(T1b) by monoclonal antibodies recognizing different epitopes.
    Fitzsimmons SP; Clark KC; Wilkerson R; Shapiro MA
    Vaccine; 2000 Aug; 19(1):114-21. PubMed ID: 10924793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons.
    Herreros J; Lalli G; Montecucco C; Schiavo G
    J Neurochem; 2000 May; 74(5):1941-50. PubMed ID: 10800937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones.
    Sutton JM; Chow-Worn O; Spaven L; Silman NJ; Hallis B; Shone CC
    FEBS Lett; 2001 Mar; 493(1):45-9. PubMed ID: 11278003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal binding of tetanus toxin compared to its ganglioside binding fragment (H(c)).
    Fishman PS; Parks DA; Patwardhan AJ; Matthews CC
    Nat Toxins; 1999; 7(4):151-6. PubMed ID: 10797643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction.
    Rummel A; Mahrhold S; Bigalke H; Binz T
    Mol Microbiol; 2004 Feb; 51(3):631-43. PubMed ID: 14731268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1.
    Deinhardt K; Berninghausen O; Willison HJ; Hopkins CR; Schiavo G
    J Cell Biol; 2006 Jul; 174(3):459-71. PubMed ID: 16880274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of retrograde transport in motor neurons reveals common endocytic carriers for tetanus toxin and neurotrophin receptor p75NTR.
    Lalli G; Schiavo G
    J Cell Biol; 2002 Jan; 156(2):233-9. PubMed ID: 11807088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simplified method for the preparation of tetanus toxin binding fragment for neurobiology.
    Fishman PS; Farrand DA; Halpern JL; Latham WC
    J Neurosci Methods; 1992 May; 42(3):229-36. PubMed ID: 1380109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunization does not interfere with uptake and transport by motor neurons of the binding fragment of tetanus toxin.
    Fishman PS; Matthews CC; Parks DA; Box M; Fairweather NF
    J Neurosci Res; 2006 Jun; 83(8):1540-3. PubMed ID: 16557581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conformational change of C fragment of tetanus neurotoxin reduces its ganglioside-binding activity but does not destroy its immunogenicity.
    Yu R; Yi S; Yu C; Fang T; Liu S; Yu T; Song X; Fu L; Hou L; Chen W
    Clin Vaccine Immunol; 2011 Oct; 18(10):1668-72. PubMed ID: 21813664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Papain-derived fragment IIc of tetanus toxin: its binding to isolated synaptic membranes and retrograde axonal transport.
    Bizzini B; Grob P; Akert K
    Brain Res; 1981 Apr; 210(1-2):291-9. PubMed ID: 6164441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two carbohydrate binding sites in the H(CC)-domain of tetanus neurotoxin are required for toxicity.
    Rummel A; Bade S; Alves J; Bigalke H; Binz T
    J Mol Biol; 2003 Feb; 326(3):835-47. PubMed ID: 12581644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.