BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10972950)

  • 1. Growth and developmental stability of Drosophila melanogaster in low frequency magnetic fields.
    Graham JH; Fletcher D; Tigue J; McDonald M
    Bioelectromagnetics; 2000 Sep; 21(6):465-72. PubMed ID: 10972950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields.
    Mirabolghasemi G; Azarnia M
    Bioelectromagnetics; 2002 Sep; 23(6):416-20. PubMed ID: 12210559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.
    Frazier MR; Harrison JF; Kirkton SD; Roberts SP
    J Exp Biol; 2008 Jul; 211(Pt 13):2116-22. PubMed ID: 18552301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of fluctuating and directional asymmetry to selection on wing shape in Drosophila melanogaster.
    Pélabon C; Hansen TF; Carter AJ; Houle D
    J Evol Biol; 2006 May; 19(3):764-76. PubMed ID: 16674573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic variability and fluctuating asymmetry of morphological signs of Drosophila melanogaster during development in a pesticide-containing environment].
    Antipin MI; Imasheva AG
    Genetika; 2001 Mar; 37(3):325-31. PubMed ID: 11357364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of larval density on phenotypic and genetic variability of morphological traits in Drosophila melanogaster].
    Bosenko DV; Imasheva AG
    Genetika; 1998 Jun; 34(6):757-61. PubMed ID: 9719923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations on the effects of low frequency electromagnetic fields on cellular transcription in Drosophila larvae reared in field-free conditions.
    Tipping DR; Chapman KE; Birley AJ; Anderson M
    Bioelectromagnetics; 1999; 20(2):129-31. PubMed ID: 10029140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a permanent magnetic field on wing size parameters in Drosophila melanogaster.
    Stamenković-Radak M; Kitanović I; Prolić Z; Tomisić I; Stojković B; Andjelković M
    Bioelectromagnetics; 2001 Jul; 22(5):365-9. PubMed ID: 11424161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Stability in development and variability in morphological signs in a natural population of Drosophila melanogaster: seasonal dynamics in 1999].
    Antipin MI; Rakitskaia TA; Imasheva AG
    Genetika; 2001 Jan; 37(1):66-72. PubMed ID: 11234427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental toxicity of ethanol in Drosophila melanogaster.
    Ranganathan S; Davis DG; Hood RD
    Teratology; 1987 Aug; 36(1):45-9. PubMed ID: 3118495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial selection reveals heritable variation for developmental instability.
    Carter AJ; Houle D
    Evolution; 2011 Dec; 65(12):3558-64. PubMed ID: 22133225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deficiency mapping of the genomic regions associated with effects on developmental stability in Drosophila melanogaster.
    Takahashi KH; Okada Y; Teramura K; Tsujino M
    Evolution; 2011 Dec; 65(12):3565-77. PubMed ID: 22133226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila.
    Soto IM; Carreira VP; Soto EM; Hasson E
    J Evol Biol; 2008 Mar; 21(2):598-609. PubMed ID: 18081744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of inbreeding on fluctuating asymmetry of wing veins in two laboratory strains of Drosophila melanogaster.
    Carter AJ; Weier TM; Houle D
    Heredity (Edinb); 2009 Jun; 102(6):563-72. PubMed ID: 19277055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of three types of ecological stress on the variability of morphological traits in Drosophila melanogaster].
    Imasheva AG; Bosenko DV; Bubliĭ OA; Lazebnyĭ OE
    Genetika; 1999 Oct; 35(10):1379-85. PubMed ID: 10624584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental genetics of the venation pattern of Drosophila.
    Garcia-Bellido A; de Celis JF
    Annu Rev Genet; 1992; 26():277-304. PubMed ID: 1482114
    [No Abstract]   [Full Text] [Related]  

  • 17. Life-history consequences of adaptation to larval nutritional stress in Drosophila.
    Kolss M; Vijendravarma RK; Schwaller G; Kawecki TJ
    Evolution; 2009 Sep; 63(9):2389-401. PubMed ID: 19473389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide deficiency mapping of the regions responsible for temporal canalization of the developmental processes of Drosophila melanogaster.
    Takahashi KH; Okada Y; Teramura K
    J Hered; 2011; 102(4):448-57. PubMed ID: 21525178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of 50 Hz circularly polarized magnetic fields of up to 350 microT on reproduction and embryo-fetal development in rats: exposure during organogenesis or during preimplantation.
    Negishi T; Imai S; Itabashi M; Nishimura I; Sasano T
    Bioelectromagnetics; 2002 Jul; 23(5):369-89. PubMed ID: 12111757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of extremely low-frequency magnetic fields on the oviposition of Drosophila melanogaster over three generations.
    Gonet B; Kosik-Bogacka DI; Kuźna-Grygiel W
    Bioelectromagnetics; 2009 Dec; 30(8):687-9. PubMed ID: 19630039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.