These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 10972984)
1. Changes in the expression of cytokeratins and nuclear matrix proteins are correlated with the level of differentiation in human prostate cancer. Alberti I; Barboro P; Barbesino M; Sanna P; Pisciotta L; Parodi S; Nicolò G; Boccardo F; Galli S; Patrone E; Balbi C J Cell Biochem; 2000 Sep; 79(3):471-85. PubMed ID: 10972984 [TBL] [Abstract][Full Text] [Related]
2. NeuroD1 expression in human prostate cancer: can it contribute to neuroendocrine differentiation comprehension? Cindolo L; Franco R; Cantile M; Schiavo G; Liguori G; Chiodini P; Salzano L; Autorino R; Di Blasi A; Falsaperla M; Feudale E; Botti G; Gallo A; Cillo C Eur Urol; 2007 Nov; 52(5):1365-73. PubMed ID: 17126478 [TBL] [Abstract][Full Text] [Related]
3. Prostate stem cell antigen mRNA expression in preoperatively negative biopsy specimens predicts subsequent cancer after transurethral resection of the prostate for benign prostatic hyperplasia. Zhao Z; Liu J; Li S; Shen W Prostate; 2009 Sep; 69(12):1292-302. PubMed ID: 19462463 [TBL] [Abstract][Full Text] [Related]
4. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Ummanni R; Junker H; Zimmermann U; Venz S; Teller S; Giebel J; Scharf C; Woenckhaus C; Dombrowski F; Walther R Cancer Lett; 2008 Aug; 266(2):171-85. PubMed ID: 18384941 [TBL] [Abstract][Full Text] [Related]
5. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cornford PA; Dodson AR; Parsons KF; Desmond AD; Woolfenden A; Fordham M; Neoptolemos JP; Ke Y; Foster CS Cancer Res; 2000 Dec; 60(24):7099-105. PubMed ID: 11156417 [TBL] [Abstract][Full Text] [Related]
6. Fibroblast growth factor 17 is over-expressed in human prostate cancer. Heer R; Douglas D; Mathers ME; Robson CN; Leung HY J Pathol; 2004 Dec; 204(5):578-86. PubMed ID: 15538740 [TBL] [Abstract][Full Text] [Related]
7. Gene expression of survivin and its spliced isoforms associated with proliferation and aggressive phenotypes of prostate cancer. Koike H; Sekine Y; Kamiya M; Nakazato H; Suzuki K Urology; 2008 Dec; 72(6):1229-33. PubMed ID: 18336887 [TBL] [Abstract][Full Text] [Related]
8. Nuclear matrix protein patterns in human benign prostatic hyperplasia and prostate cancer. Partin AW; Getzenberg RH; CarMichael MJ; Vindivich D; Yoo J; Epstein JI; Coffey DS Cancer Res; 1993 Feb; 53(4):744-6. PubMed ID: 7679049 [TBL] [Abstract][Full Text] [Related]
9. Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues: implications for prostate carcinogenesis and progression of prostate cancer. Zhigang Z; Wenlv S Jpn J Clin Oncol; 2004 Jul; 34(7):414-9. PubMed ID: 15342669 [TBL] [Abstract][Full Text] [Related]
10. Androgen receptor versus erbB-1 and erbB-2 expression in human prostate neoplasms. Brys M; Stawinska M; Foksinski M; Barecki A; Zydek C; Miekos E; Krajewska WM Oncol Rep; 2004 Jan; 11(1):219-24. PubMed ID: 14654929 [TBL] [Abstract][Full Text] [Related]
11. The relationship of cathepsin B and stefin A mRNA localization identifies a potentially aggressive variant of human prostate cancer within a Gleason histologic score. Sinha AA; Quast BJ; Korkowski JC; Wilson MJ; Reddy PK; Ewing SL; Sloane BF; Gleason DF Anticancer Res; 1999; 19(4B):2821-9. PubMed ID: 10652560 [TBL] [Abstract][Full Text] [Related]
12. Expression and role of Foxa proteins in prostate cancer. Mirosevich J; Gao N; Gupta A; Shappell SB; Jove R; Matusik RJ Prostate; 2006 Jul; 66(10):1013-28. PubMed ID: 16001449 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the nuclear matrix proteins in a transgenic mouse model for prostate cancer. Leman ES; Arlotti JA; Dhir R; Greenberg N; Getzenberg RH J Cell Biochem; 2002; 86(2):203-12. PubMed ID: 12111990 [TBL] [Abstract][Full Text] [Related]
14. Epithelial and prostatic marker expression in short-term primary cultures of human prostate tissue samples. Festuccia C; Angelucci A; Gravina GL; Muzi P; Miano R; Vicentini C; Bologna M Int J Oncol; 2005 May; 26(5):1353-62. PubMed ID: 15809728 [TBL] [Abstract][Full Text] [Related]
15. [Expression and significance of PCNA and p27 in benign prostate hypertrophy and prostate carcinoma]. Lai JS; Xia Q; Zhang XB; Zhao GP; Xu SL; Zheng DS Zhonghua Zhong Liu Za Zhi; 2004 Aug; 26(8):476-8. PubMed ID: 15555337 [TBL] [Abstract][Full Text] [Related]
16. Nuclear matrix proteins changes in cancerous prostate tissues and their prognostic value in clinically localized prostate cancer. Boccardo F; Rubagotti A; Carmignani G; Romagnoli A; Nicolò G; Barboro P; Parodi S; Patrone E; Balbi C Prostate; 2003 Jun; 55(4):259-64. PubMed ID: 12712405 [TBL] [Abstract][Full Text] [Related]
17. Nuclear matrix protein expression in prostate cancer: possible prognostic and diagnostic applications. Barboro P; Rubagotti A; Boccardo F; Carnemolla B; Darrigo C; Patrone E; Balbi C Anticancer Res; 2005; 25(6B):3999-4004. PubMed ID: 16309191 [TBL] [Abstract][Full Text] [Related]
19. Clinical significance of the leptin and leptin receptor expressions in prostate tissues. Hoon Kim J; Lee SY; Myung SC; Kim YS; Kim TH; Kim MK Asian J Androl; 2008 Nov; 10(6):923-8. PubMed ID: 18958356 [TBL] [Abstract][Full Text] [Related]
20. Expression analysis of thrombospondin 2 in prostate cancer and benign prostatic hyperplasia. Matos AR; Coutinho-Camillo CM; Thuler LC; Fonseca FP; Soares FA; Silva EA; Gimba ER Exp Mol Pathol; 2013 Jun; 94(3):438-44. PubMed ID: 23470460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]