BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10973789)

  • 41. Use of voltage clamp fluorimetry in understanding potassium channel gating: a review of Shaker fluorescence data.
    Horne AJ; Fedida D
    Can J Physiol Pharmacol; 2009 Jun; 87(6):411-8. PubMed ID: 19526034
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel.
    Chen J; Mitcheson JS; Lin M; Sanguinetti MC
    J Biol Chem; 2000 Nov; 275(46):36465-71. PubMed ID: 10962006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Loss of shaker K channel conductance in 0 K+ solutions: role of the voltage sensor.
    Melishchuk A; Loboda A; Armstrong CM
    Biophys J; 1998 Oct; 75(4):1828-35. PubMed ID: 9746524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating.
    Baker OS; Larsson HP; Mannuzzu LM; Isacoff EY
    Neuron; 1998 Jun; 20(6):1283-94. PubMed ID: 9655514
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cations affect the rate of gating charge recovery in wild-type and W434F Shaker channels through a variety of mechanisms.
    Varga Z; Rayner MD; Starkus JG
    J Gen Physiol; 2002 May; 119(5):467-85. PubMed ID: 11981024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of a mammalian Shaker-related potassium channel, hKv1.5, by extracellular potassium and pH.
    Jäger H; Grissmer S
    FEBS Lett; 2001 Jan; 488(1-2):45-50. PubMed ID: 11163793
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of the S4 in cooperativity of voltage-dependent potassium channel activation.
    Smith-Maxwell CJ; Ledwell JL; Aldrich RW
    J Gen Physiol; 1998 Mar; 111(3):399-420. PubMed ID: 9482708
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Voltage-dependent proton transport by the voltage sensor of the Shaker K+ channel.
    Starace DM; Stefani E; Bezanilla F
    Neuron; 1997 Dec; 19(6):1319-27. PubMed ID: 9427254
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterizing voltage-dependent conformational changes in the Shaker K+ channel with fluorescence.
    Cha A; Bezanilla F
    Neuron; 1997 Nov; 19(5):1127-40. PubMed ID: 9390525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Helical structure and packing orientation of the S2 segment in the Shaker K+ channel.
    Monks SA; Needleman DJ; Miller C
    J Gen Physiol; 1999 Mar; 113(3):415-23. PubMed ID: 10051517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformational changes in a mammalian voltage-dependent potassium channel inactivation peptide.
    Abbott GW; Mercer EA; Miller RT; Ramesh B; Srai SK
    Biochemistry; 1998 Feb; 37(6):1640-5. PubMed ID: 9484235
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrostatic model of S4 motion in voltage-gated ion channels.
    Lecar H; Larsson HP; Grabe M
    Biophys J; 2003 Nov; 85(5):2854-64. PubMed ID: 14581190
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel.
    Minor DL; Lin YF; Mobley BC; Avelar A; Jan YN; Jan LY; Berger JM
    Cell; 2000 Sep; 102(5):657-70. PubMed ID: 11007484
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer.
    Posson DJ; Ge P; Miller C; Bezanilla F; Selvin PR
    Nature; 2005 Aug; 436(7052):848-51. PubMed ID: 16094368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A mutation in S6 of Shaker potassium channels decreases the K+ affinity of an ion binding site revealing ion-ion interactions in the pore.
    Ogielska EM; Aldrich RW
    J Gen Physiol; 1998 Aug; 112(2):243-57. PubMed ID: 9689030
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural implications of fluorescence quenching in the Shaker K+ channel.
    Cha A; Bezanilla F
    J Gen Physiol; 1998 Oct; 112(4):391-408. PubMed ID: 9758859
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence.
    Mannuzzu LM; Isacoff EY
    J Gen Physiol; 2000 Mar; 115(3):257-68. PubMed ID: 10694254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of the Kv4 (Shal) family of transient K+ currents by arachidonic acid.
    Villarroel A; Schwarz TL
    J Neurosci; 1996 Feb; 16(3):1016-25. PubMed ID: 8558229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of the S3-S4 linker in Shaker potassium channel activation.
    Mathur R; Zheng J; Yan Y; Sigworth FJ
    J Gen Physiol; 1997 Feb; 109(2):191-9. PubMed ID: 9041448
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation.
    Lacroix JJ; Campos FV; Frezza L; Bezanilla F
    Neuron; 2013 Aug; 79(4):651-7. PubMed ID: 23972594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.