These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1124 related articles for article (PubMed ID: 10973989)
21. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. Hauf S; Cole RW; LaTerra S; Zimmer C; Schnapp G; Walter R; Heckel A; van Meel J; Rieder CL; Peters JM J Cell Biol; 2003 Apr; 161(2):281-94. PubMed ID: 12707311 [TBL] [Abstract][Full Text] [Related]
22. Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells. Kollu S; Bakhoum SF; Compton DA Curr Biol; 2009 Dec; 19(24):2108-13. PubMed ID: 19931454 [TBL] [Abstract][Full Text] [Related]
23. Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Boleti H; Karsenti E; Vernos I Cell; 1996 Jan; 84(1):49-59. PubMed ID: 8548825 [TBL] [Abstract][Full Text] [Related]
24. MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. Domnitz SB; Wagenbach M; Decarreau J; Wordeman L J Cell Biol; 2012 Apr; 197(2):231-7. PubMed ID: 22492725 [TBL] [Abstract][Full Text] [Related]
25. S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. Skoufias DA; DeBonis S; Saoudi Y; Lebeau L; Crevel I; Cross R; Wade RH; Hackney D; Kozielski F J Biol Chem; 2006 Jun; 281(26):17559-69. PubMed ID: 16507573 [TBL] [Abstract][Full Text] [Related]
26. The Xenopus laevis aurora/Ip11p-related kinase pEg2 participates in the stability of the bipolar mitotic spindle. Giet R; Prigent C Exp Cell Res; 2000 Jul; 258(1):145-51. PubMed ID: 10912796 [TBL] [Abstract][Full Text] [Related]
27. CENP-W plays a role in maintaining bipolar spindle structure. Kaczmarczyk A; Sullivan KF PLoS One; 2014; 9(10):e106464. PubMed ID: 25329824 [TBL] [Abstract][Full Text] [Related]
28. The effect of monastrol on the processive motility of a dimeric kinesin-5 head/kinesin-1 stalk chimera. Lakämper S; Thiede C; Düselder A; Reiter S; Korneev MJ; Kapitein LC; Peterman EJ; Schmidt CF J Mol Biol; 2010 May; 399(1):1-8. PubMed ID: 20227420 [TBL] [Abstract][Full Text] [Related]
29. Mitotic spindle organization by a plus-end-directed microtubule motor. Sawin KE; LeGuellec K; Philippe M; Mitchison TJ Nature; 1992 Oct; 359(6395):540-3. PubMed ID: 1406972 [TBL] [Abstract][Full Text] [Related]
30. New chemical tools for investigating human mitotic kinesin Eg5. Klein E; DeBonis S; Thiede B; Skoufias DA; Kozielski F; Lebeau L Bioorg Med Chem; 2007 Oct; 15(19):6474-88. PubMed ID: 17587586 [TBL] [Abstract][Full Text] [Related]
31. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells. Al-Obaidi N; Mitchison TJ; Crews CM; Mayer TU ACS Chem Biol; 2016 Jun; 11(6):1544-51. PubMed ID: 27121275 [TBL] [Abstract][Full Text] [Related]
32. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Nakai R; Iida S; Takahashi T; Tsujita T; Okamoto S; Takada C; Akasaka K; Ichikawa S; Ishida H; Kusaka H; Akinaga S; Murakata C; Honda S; Nitta M; Saya H; Yamashita Y Cancer Res; 2009 May; 69(9):3901-9. PubMed ID: 19351824 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of inhibition of human KSP by monastrol: insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Luo L; Carson JD; Dhanak D; Jackson JR; Huang PS; Lee Y; Sakowicz R; Copeland RA Biochemistry; 2004 Dec; 43(48):15258-66. PubMed ID: 15568818 [TBL] [Abstract][Full Text] [Related]
34. Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Haque SA; Hasaka TP; Brooks AD; Lobanov PV; Baas PW Cell Motil Cytoskeleton; 2004 May; 58(1):10-6. PubMed ID: 14983520 [TBL] [Abstract][Full Text] [Related]
35. The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. Mountain V; Simerly C; Howard L; Ando A; Schatten G; Compton DA J Cell Biol; 1999 Oct; 147(2):351-66. PubMed ID: 10525540 [TBL] [Abstract][Full Text] [Related]
36. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Vanneste D; Takagi M; Imamoto N; Vernos I Curr Biol; 2009 Nov; 19(20):1712-7. PubMed ID: 19818619 [TBL] [Abstract][Full Text] [Related]
37. Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Tcherniuk S; van Lis R; Kozielski F; Skoufias DA Biochem Pharmacol; 2010 Mar; 79(6):864-72. PubMed ID: 19896928 [TBL] [Abstract][Full Text] [Related]
38. Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells. Cimini D; Howell B; Maddox P; Khodjakov A; Degrassi F; Salmon ED J Cell Biol; 2001 Apr; 153(3):517-27. PubMed ID: 11331303 [TBL] [Abstract][Full Text] [Related]
39. Centrin: another target of monastrol, an inhibitor of mitotic spindle. Duan L; Wang TQ; Bian W; Liu W; Sun Y; Yang BS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1086-91. PubMed ID: 25300040 [TBL] [Abstract][Full Text] [Related]
40. Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. Cahu J; Olichon A; Hentrich C; Schek H; Drinjakovic J; Zhang C; Doherty-Kirby A; Lajoie G; Surrey T PLoS One; 2008; 3(12):e3936. PubMed ID: 19079595 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]