These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 10974097)
1. Allele-specific gene targeting in Candida albicans results from heterology between alleles. Yesland K; Fonzi WA Microbiology (Reading); 2000 Sep; 146 ( Pt 9)():2097-2104. PubMed ID: 10974097 [TBL] [Abstract][Full Text] [Related]
2. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Sharkey LL; Liao WL; Ghosh AK; Fonzi WA Microbiology (Reading); 2005 Apr; 151(Pt 4):1061-1071. PubMed ID: 15817775 [TBL] [Abstract][Full Text] [Related]
3. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mühlschlegel FA; Fonzi WA Mol Cell Biol; 1997 Oct; 17(10):5960-7. PubMed ID: 9315654 [TBL] [Abstract][Full Text] [Related]
4. Isogenic strain construction and gene mapping in Candida albicans. Fonzi WA; Irwin MY Genetics; 1993 Jul; 134(3):717-28. PubMed ID: 8349105 [TBL] [Abstract][Full Text] [Related]
5. Rapid PCR test for discriminating between Candida albicans and Candida dubliniensis isolates using primers derived from the pH-regulated PHR1 and PHR2 genes of C. albicans. Kurzai O; Heinz WJ; Sullivan DJ; Coleman DC; Frosch M; Mühlschlegel FA J Clin Microbiol; 1999 May; 37(5):1587-90. PubMed ID: 10203530 [TBL] [Abstract][Full Text] [Related]
6. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Saporito-Irwin SM; Birse CE; Sypherd PS; Fonzi WA Mol Cell Biol; 1995 Feb; 15(2):601-13. PubMed ID: 7823929 [TBL] [Abstract][Full Text] [Related]
7. Molecular responses to changes in the environmental pH are conserved between the fungal pathogens Candida dubliniensis and Candida albicans. Heinz WJ; Kurzai O; Brakhage AA; Fonzi WA; Korting HC; Frosch M; Mühlschlegel FA Int J Med Microbiol; 2000 Jul; 290(3):231-8. PubMed ID: 10959725 [TBL] [Abstract][Full Text] [Related]
8. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Morschhäuser J; Michel S; Staib P Mol Microbiol; 1999 May; 32(3):547-56. PubMed ID: 10320577 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall Integrity. Kottom TJ; Thomas CF; Limper AH J Bacteriol; 2001 Dec; 183(23):6740-5. PubMed ID: 11698360 [TBL] [Abstract][Full Text] [Related]
11. Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. Popolo L; Vai M J Bacteriol; 1998 Jan; 180(1):163-6. PubMed ID: 9422607 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning of Arabidopsis photolyase gene (PHR1) and characterization of its promoter region. Sakamoto A; Tanaka A; Watanabe H; Tano S DNA Seq; 1998; 9(5-6):335-40. PubMed ID: 10524761 [TBL] [Abstract][Full Text] [Related]
13. Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact. Marton T; Feri A; Commere PH; Maufrais C; d'Enfert C; Legrand M mSphere; 2019 Feb; 4(1):. PubMed ID: 30760617 [TBL] [Abstract][Full Text] [Related]
14. Repeated use of GAL1 for gene disruption in Candida albicans. Gorman JA; Chan W; Gorman JW Genetics; 1991 Sep; 129(1):19-24. PubMed ID: 1936958 [TBL] [Abstract][Full Text] [Related]
15. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. El Barkani A; Kurzai O; Fonzi WA; Ramon A; Porta A; Frosch M; Mühlschlegel FA Mol Cell Biol; 2000 Jul; 20(13):4635-47. PubMed ID: 10848590 [TBL] [Abstract][Full Text] [Related]
16. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Wilson RB; Davis D; Enloe BM; Mitchell AP Yeast; 2000 Jan; 16(1):65-70. PubMed ID: 10620776 [TBL] [Abstract][Full Text] [Related]
17. PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. Fonzi WA J Bacteriol; 1999 Nov; 181(22):7070-9. PubMed ID: 10559174 [TBL] [Abstract][Full Text] [Related]
18. Isolation of hem3 mutants from Candida albicans by sequential gene disruption. Kurtz MB; Marrinan J Mol Gen Genet; 1989 May; 217(1):47-52. PubMed ID: 2671651 [TBL] [Abstract][Full Text] [Related]
19. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Reuss O; Vik A; Kolter R; Morschhäuser J Gene; 2004 Oct; 341():119-27. PubMed ID: 15474295 [TBL] [Abstract][Full Text] [Related]
20. Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of Bellido A; Ciudad T; Hermosa B; Andaluz E; Forche A; Larriba G G3 (Bethesda); 2019 Nov; 9(11):3631-3644. PubMed ID: 31690596 [No Abstract] [Full Text] [Related] [Next] [New Search]