BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10974097)

  • 1. Allele-specific gene targeting in Candida albicans results from heterology between alleles.
    Yesland K; Fonzi WA
    Microbiology (Reading); 2000 Sep; 146 ( Pt 9)():2097-2104. PubMed ID: 10974097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans.
    Sharkey LL; Liao WL; Ghosh AK; Fonzi WA
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1061-1071. PubMed ID: 15817775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression.
    Mühlschlegel FA; Fonzi WA
    Mol Cell Biol; 1997 Oct; 17(10):5960-7. PubMed ID: 9315654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isogenic strain construction and gene mapping in Candida albicans.
    Fonzi WA; Irwin MY
    Genetics; 1993 Jul; 134(3):717-28. PubMed ID: 8349105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid PCR test for discriminating between Candida albicans and Candida dubliniensis isolates using primers derived from the pH-regulated PHR1 and PHR2 genes of C. albicans.
    Kurzai O; Heinz WJ; Sullivan DJ; Coleman DC; Frosch M; Mühlschlegel FA
    J Clin Microbiol; 1999 May; 37(5):1587-90. PubMed ID: 10203530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis.
    Saporito-Irwin SM; Birse CE; Sypherd PS; Fonzi WA
    Mol Cell Biol; 1995 Feb; 15(2):601-13. PubMed ID: 7823929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular responses to changes in the environmental pH are conserved between the fungal pathogens Candida dubliniensis and Candida albicans.
    Heinz WJ; Kurzai O; Brakhage AA; Fonzi WA; Korting HC; Frosch M; Mühlschlegel FA
    Int J Med Microbiol; 2000 Jul; 290(3):231-8. PubMed ID: 10959725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination.
    Morschhäuser J; Michel S; Staib P
    Mol Microbiol; 1999 May; 32(3):547-56. PubMed ID: 10320577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced virulence of Candida albicans PHR1 mutants.
    Ghannoum MA; Spellberg B; Saporito-Irwin SM; Fonzi WA
    Infect Immun; 1995 Nov; 63(11):4528-30. PubMed ID: 7591097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall Integrity.
    Kottom TJ; Thomas CF; Limper AH
    J Bacteriol; 2001 Dec; 183(23):6740-5. PubMed ID: 11698360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant.
    Popolo L; Vai M
    J Bacteriol; 1998 Jan; 180(1):163-6. PubMed ID: 9422607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of Arabidopsis photolyase gene (PHR1) and characterization of its promoter region.
    Sakamoto A; Tanaka A; Watanabe H; Tano S
    DNA Seq; 1998; 9(5-6):335-40. PubMed ID: 10524761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact.
    Marton T; Feri A; Commere PH; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated use of GAL1 for gene disruption in Candida albicans.
    Gorman JA; Chan W; Gorman JW
    Genetics; 1991 Sep; 129(1):19-24. PubMed ID: 1936958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans.
    El Barkani A; Kurzai O; Fonzi WA; Ramon A; Porta A; Frosch M; Mühlschlegel FA
    Mol Cell Biol; 2000 Jul; 20(13):4635-47. PubMed ID: 10848590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions.
    Wilson RB; Davis D; Enloe BM; Mitchell AP
    Yeast; 2000 Jan; 16(1):65-70. PubMed ID: 10620776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans.
    Fonzi WA
    J Bacteriol; 1999 Nov; 181(22):7070-9. PubMed ID: 10559174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of hem3 mutants from Candida albicans by sequential gene disruption.
    Kurtz MB; Marrinan J
    Mol Gen Genet; 1989 May; 217(1):47-52. PubMed ID: 2671651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans.
    Reuss O; Vik A; Kolter R; Morschhäuser J
    Gene; 2004 Oct; 341():119-27. PubMed ID: 15474295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partner Choice in Spontaneous Mitotic Recombination in Wild Type and Homologous Recombination Mutants of
    Bellido A; Ciudad T; Hermosa B; Andaluz E; Forche A; Larriba G
    G3 (Bethesda); 2019 Nov; 9(11):3631-3644. PubMed ID: 31690596
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.