These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 10974232)
1. The effect of lipid composition and physical state of phospholipid monolayer on the binding and incorporation of a basic amphipathic peptide from the C-terminal region of the HIV envelope protein gp41. Trommeshauser D; Krol S; Bergelson LD; Galla HJ Chem Phys Lipids; 2000 Sep; 107(1):83-92. PubMed ID: 10974232 [TBL] [Abstract][Full Text] [Related]
2. Interaction of a basic amphipathic peptide from the carboxyterminal part of the HIV envelope protein gp41 with negatively charged lipid surfaces. Trommeshauser D; Galla HJ Chem Phys Lipids; 1998 Jul; 94(1):81-96. PubMed ID: 9721631 [TBL] [Abstract][Full Text] [Related]
3. Interaction of peptide fragment 828-848 of the envelope glycoprotein of human immunodeficiency virus type I with lipid bilayers. Gawrisch K; Han KH; Yang JS; Bergelson LD; Ferretti JA Biochemistry; 1993 Mar; 32(12):3112-8. PubMed ID: 8457572 [TBL] [Abstract][Full Text] [Related]
4. Effect of the conformation of a peptide from gp41 on binding and domain formation in model membranes. Koenig BW; Bergelson LD; Gawrisch K; Ward J; Ferretti JA Mol Membr Biol; 1995; 12(1):77-82. PubMed ID: 7767387 [TBL] [Abstract][Full Text] [Related]
5. Study of the inhibition capacity of an 18-mer peptide domain of GBV-C virus on gp41-FP HIV-1 activity. Haro I; Gómara MJ; Galatola R; Domènech O; Prat J; Girona V; Busquets MA Biochim Biophys Acta; 2011 Jun; 1808(6):1567-73. PubMed ID: 21377446 [TBL] [Abstract][Full Text] [Related]
6. Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. Rafalski M; Lear JD; DeGrado WF Biochemistry; 1990 Aug; 29(34):7917-22. PubMed ID: 2261447 [TBL] [Abstract][Full Text] [Related]
7. A peptide pertaining to the loop segment of human immunodeficiency virus gp41 binds and interacts with model biomembranes: implications for the fusion mechanism. Pascual R; Moreno MR; Villalaín J J Virol; 2005 Apr; 79(8):5142-52. PubMed ID: 15795298 [TBL] [Abstract][Full Text] [Related]
8. Structure and interaction with membrane model systems of a peptide derived from the major epitope region of HIV protein gp41: implications on viral fusion mechanism. Contreras LM; Aranda FJ; Gavilanes F; González-Ros JM; Villalaín J Biochemistry; 2001 Mar; 40(10):3196-207. PubMed ID: 11258936 [TBL] [Abstract][Full Text] [Related]
9. The interactions of the N-terminal fusogenic peptide of HIV-1 gp41 with neutral phospholipids. Curtain C; Separovic F; Nielsen K; Craik D; Zhong Y; Kirkpatrick A Eur Biophys J; 1999; 28(5):427-36. PubMed ID: 10413864 [TBL] [Abstract][Full Text] [Related]
10. Functional and structural characterization of HIV-1 gp41 ectodomain regions in phospholipid membranes suggests that the fusion-active conformation is extended. Korazim O; Sackett K; Shai Y J Mol Biol; 2006 Dec; 364(5):1103-17. PubMed ID: 17045292 [TBL] [Abstract][Full Text] [Related]
11. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins. Lev N; Shai Y J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659 [TBL] [Abstract][Full Text] [Related]
12. An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. Chernomordik L; Chanturiya AN; Suss-Toby E; Nora E; Zimmerberg J J Virol; 1994 Nov; 68(11):7115-23. PubMed ID: 7933093 [TBL] [Abstract][Full Text] [Related]
13. A leucine zipper-like sequence from the cytoplasmic tail of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers. Kliger Y; Shai Y Biochemistry; 1997 Apr; 36(17):5157-69. PubMed ID: 9136877 [TBL] [Abstract][Full Text] [Related]
14. Conformational stability and membrane interaction of the full-length ectodomain of HIV-1 gp41: implication for mode of action. Lev N; Fridmann-Sirkis Y; Blank L; Bitler A; Epand RF; Epand RM; Shai Y Biochemistry; 2009 Apr; 48(14):3166-75. PubMed ID: 19206186 [TBL] [Abstract][Full Text] [Related]
15. Interaction of anti-HIV type 1 antibody 2F5 with phospholipid bilayers and its relevance for the mechanism of virus neutralization. Maeso R; Huarte N; Julien JP; Kunert R; Pai EF; Nieva JL AIDS Res Hum Retroviruses; 2011 Aug; 27(8):863-76. PubMed ID: 21142698 [TBL] [Abstract][Full Text] [Related]
16. Effect of nonpolar substitutions of the conserved Phe11 in the fusion peptide of HIV-1 gp41 on its function, structure, and organization in membranes. Pritsker M; Rucker J; Hoffman TL; Doms RW; Shai Y Biochemistry; 1999 Aug; 38(35):11359-71. PubMed ID: 10471286 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the interaction of two peptides from the N terminus of the NHR domain of HIV-1 gp41 with phospholipid membranes. Moreno MR; Guillén J; Pérez-Berna AJ; Amorós D; Gómez AI; Bernabeu A; Villalaín J Biochemistry; 2007 Sep; 46(37):10572-84. PubMed ID: 17711304 [TBL] [Abstract][Full Text] [Related]
18. Influence of the lipid composition of biomimetic monolayers on the structure and orientation of the gp41 tryptophan-rich peptide from HIV-1. Matar G; Besson F Biochim Biophys Acta; 2011 Oct; 1808(10):2534-43. PubMed ID: 21699883 [TBL] [Abstract][Full Text] [Related]
19. The LLSGIV stretch of the N-terminal region of HIV-1 gp41 is critical for binding to a model peptide, T20. Trivedi VD; Cheng SF; Wu CW; Karthikeyan R; Chen CJ; Chang DK Protein Eng; 2003 Apr; 16(4):311-7. PubMed ID: 12736375 [TBL] [Abstract][Full Text] [Related]