BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1097435)

  • 41. The importance of loop region residues 40-46 in human dihydrofolate reductase as revealed by site-directed mutagenesis.
    Tan XH; Huang SM; Ratnam M; Thompson PD; Freisheim JH
    J Biol Chem; 1990 May; 265(14):8027-32. PubMed ID: 2186034
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of an R-plasmid dihydrofolate reductase with a monomeric structure.
    Joyner SS; Fling ME; Stone D; Baccanari DP
    J Biol Chem; 1984 May; 259(9):5851-6. PubMed ID: 6371010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The primary structure of L-asparaginase from Escherichia coli.
    Maita T; Matsuda G
    Hoppe Seylers Z Physiol Chem; 1980; 361(2):105-17. PubMed ID: 6766894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The border residues of the dihydrofolate reductase domain in Escherichia coli beta-galactosidase correspond to the positions of introns 1 and 5 of dihydrofolate reductase of chicken.
    Kuchinke W
    J Mol Evol; 1989 Jul; 29(1):95-7. PubMed ID: 2504933
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The amino acid sequence of Escherichia coli cyanase.
    Chin CC; Anderson PM; Wold F
    J Biol Chem; 1983 Jan; 258(1):276-82. PubMed ID: 6336748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. N-terminal amino acid sequence of the chromosomal dihydrofolate reductase purified from trimethoprim-resistant Staphylococcus aureus.
    Hartman PG; Stähli M; Kocher HP; Then RL
    FEBS Lett; 1988 Dec; 242(1):157-60. PubMed ID: 3060373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase.
    Huang Z; Wagner CR; Benkovic SJ
    Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [High-voltage electrophoresis of dihydrofolate reductase from Escherichia coli W 3110 (author's transl)].
    Schalhorn A; Wilmanns W
    Res Exp Med (Berl); 1977 Jan; 169(3):213-9. PubMed ID: 320638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complete amino acid sequence of human phosphoglycerate kinase. Cyanogen bromide peptides and complete amino acid sequence.
    Huang IY; Welch CD; Yoshida A
    J Biol Chem; 1980 Jul; 255(13):6412-20. PubMed ID: 7391027
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dihydropteridine reductase as an alternative to dihydrofolate reductase for synthesis of tetrahydrofolate in Thermus thermophilus.
    Wilquet V; Van de Casteele M; Gigot D; Legrain C; Glansdorff N
    J Bacteriol; 2004 Jan; 186(2):351-5. PubMed ID: 14702303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glutathione reductase from human erythrocytes: amino-acid sequence of the structurally known FAD-binding domain.
    Untucht-Grau R; Schirmer RH; Schirmer I; Krauth-Siegel RL
    Eur J Biochem; 1981 Nov; 120(2):407-19. PubMed ID: 7032915
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary structure of 3-phosphoglycerate kinase from horse muscle. II. Amino acid sequence of cyanogen bromide peptides CB1-CB4 and CB6-CB14, sequence of methionine-containing regions, and complete sequence of the enzyme.
    Merrett M
    J Biol Chem; 1981 Oct; 256(20):10293-305. PubMed ID: 7287713
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutations in the dihydrofolate reductase gene of trimethoprim-resistant isolates of Streptococcus pneumoniae.
    Adrian PV; Klugman KP
    Antimicrob Agents Chemother; 1997 Nov; 41(11):2406-13. PubMed ID: 9371341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anti-idiotypic antibodies elicited by pterin recognize active site epitopes in dihydrofolate reductases and dihydropteridine reductase.
    Ratnam S; Ratnam M; Cotton RG; Jennings IG; Freisheim JH
    Arch Biochem Biophys; 1989 Dec; 275(2):344-53. PubMed ID: 2480746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete amino acid sequence of NADH-cytochrome b5 reductase purified from human erythrocytes.
    Yubisui T; Miyata T; Iwanaga S; Tamura M; Takeshita M
    J Biochem; 1986 Feb; 99(2):407-22. PubMed ID: 3700359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The dihydrofolate reductase domain of Plasmodium falciparum thymidylate synthase-dihydrofolate reductase. Gene synthesis, expression, and anti-folate-resistant mutants.
    Sirawaraporn W; Prapunwattana P; Sirawaraporn R; Yuthavong Y; Santi DV
    J Biol Chem; 1993 Oct; 268(29):21637-44. PubMed ID: 8408015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide sequence reveals overlap between T4 phage genes encoding dihydrofolate reductase and thymidylate synthase.
    Purohit S; Mathews CK
    J Biol Chem; 1984 May; 259(10):6261-6. PubMed ID: 6327673
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methylenetetrahydrofolate dehydrogenase of the amethopterin-resistant strain Streptococcus faecium var. durans A and its repressibility by serine.
    Albrecht AM; Pearce FK; Hutchison DJ
    J Bacteriol; 1968 May; 95(5):1779-89. PubMed ID: 4384970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The covalent and three-dimensional structural of concanavalin A. I. Amino acid sequence of cyanogen bromide fragments F1 and F2.
    Wang JL; Cunningham BA; Waxdal MJ; Edelman GM
    J Biol Chem; 1975 Feb; 250(4):1490-502. PubMed ID: 1112813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence.
    Collins JH; Elzinga M
    J Biol Chem; 1975 Aug; 250(15):5915-20. PubMed ID: 1150665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.