These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1097435)

  • 81. The amino acid sequence of dihydrofolate reductase from L1210 cells.
    Stone D; Phillips AW
    FEBS Lett; 1977 Feb; 74(1):85-8. PubMed ID: 402293
    [No Abstract]   [Full Text] [Related]  

  • 82. Determination of the complete amino-acid sequence of protein S4 from Escherichia coli ribosomes.
    Schiltz E; Reinbolt J
    Eur J Biochem; 1975 Aug; 56(2):467-81. PubMed ID: 1100394
    [TBL] [Abstract][Full Text] [Related]  

  • 83. The primary structure of iron superoxide dismutase from Escherichia coli.
    SchininĂ  ME; Maffey L; Barra D; Bossa F; Puget K; Michelson AM
    FEBS Lett; 1987 Aug; 221(1):87-90. PubMed ID: 3305077
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Primary structure of the B-chain of human plasmin.
    Wiman B
    Eur J Biochem; 1977 Jun; 76(1):129-37. PubMed ID: 142009
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Dihydrofolate reductase from bovine liver. Enzymatic and structural properties.
    Baumann H; Wilson KJ
    Eur J Biochem; 1975 Dec; 60(1):9-15. PubMed ID: 1204646
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Regulation of dihydrofolate reductase and other folate-requiring enzymes.
    Bertino JR; Hillcoat BL
    Adv Enzyme Regul; 1968; 6():335-49. PubMed ID: 4888607
    [No Abstract]   [Full Text] [Related]  

  • 87. Primary structure of rabbit skeletal muscle troponin-T. Sequence determination of four cyanogen bromide fragments, CB4, CB6, and CB7.
    Pearlstone JR; Carpenter MR; Smillie LB
    J Biol Chem; 1977 Feb; 252(3):978-82. PubMed ID: 838708
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The primary structure of actin from rabbit skeletal muscle. Five cyanogen bromide peptides, including the NH2 and COOH termini.
    Elzinga M; Collins JH
    J Biol Chem; 1975 Aug; 250(15):5897-905. PubMed ID: 1150664
    [TBL] [Abstract][Full Text] [Related]  

  • 89. [Primary structure of 20S,22R-cholesterol-hydroxylating cytochrome P-450 from bovine adrenal cortex mitochondria. IV. Structure of peptides of thermolytic and limited tryptic hydrolysis of the fragment F1; peptides of cyanogen bromide hydrolysis of cytochrome P-450. Complete amino acid sequence].
    Chashchin VL; Lapko VN; Adamovich TB; Lapko AG; Kuprina NS
    Bioorg Khim; 1985 Aug; 11(8):1048-67. PubMed ID: 3904759
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Amino acid sequence of beta-galactosidase. XI. Peptide ordering procedures and the complete sequence.
    Fowler AV; Zabin I
    J Biol Chem; 1978 Aug; 253(15):5521-5. PubMed ID: 97298
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Amino acid sequence of Streptomyces griseus trypsin. Cyanogen bromide fragments and complete sequence.
    Olafson RW; Jurásek L; Carpenter MR; Smillie LB
    Biochemistry; 1975 Mar; 14(6):1168-77. PubMed ID: 804314
    [TBL] [Abstract][Full Text] [Related]  

  • 92. N-terminal amino acid sequence of the novel type IIIb trimethoprim-resistant plasmid-encoded dihydrofolate reductase from Shigella sonnei.
    Thomson CJ; Barg N; Amyes SG
    J Gen Microbiol; 1990 Apr; 136(4):673-7. PubMed ID: 2204677
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Bacteriophage tail components. II. Dihydrofolate reductase in T4D bacteriophage.
    Kozloff LM; Verses C; Lute M; Crosby LK
    J Virol; 1970 Jun; 5(6):740-53. PubMed ID: 4393396
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The amino acid sequence of two small ribosomal proteins from Bacillus stearothermophilus.
    Tanaka I; Kimura M; Kimura J; Dijk J
    FEBS Lett; 1984 Jan; 166(2):343-6. PubMed ID: 6420194
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Amplification and modification of dihydrofolate reductase in Escherichia coli. Nucleotide sequence of fol genes from mutationally altered plasmids.
    Smith DR; Rood JI; Bird PI; Sneddon MK; Calvo JM; Morrison JF
    J Biol Chem; 1982 Aug; 257(15):9043-8. PubMed ID: 7047532
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Activation of bovine and chicken liver dihydrofolate reductases and its relationship to a specific cysteine residue in their NH2-terminal amino acid sequences.
    Kaufman BT; Kumar AA; Blankenship DT; Freisheim JH
    J Biol Chem; 1980 Jul; 255(14):6542-5. PubMed ID: 7391032
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Separation of folic acid reductase from Streptococcus faecium (ATCC 8043).
    Speck EL; Affronti LF
    J Bacteriol; 1969 Mar; 97(3):1160-4. PubMed ID: 5776522
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Strain variation within Streptococcus faecium var. durans.
    Coultas MK; Albrecht AM; Hutchison DJ
    J Bacteriol; 1966 Aug; 92(2):516-7. PubMed ID: 5912931
    [No Abstract]   [Full Text] [Related]  

  • 99. Dihydrofolate reductases in some folate-requiring bacteria with low trimethoprim susceptibility.
    Then RL; Riggenbach H
    Antimicrob Agents Chemother; 1978 Jul; 14(1):112-7. PubMed ID: 686702
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The structure of the mutant dihydrofolate reductase from Streptococcus faecium. Amino acid sequence of peptide CNBr 7 and complete sequence of the protein.
    Peterson DL; Gleisner JM; Blakley RL
    J Biol Chem; 1975 Jul; 250(13):4945-54. PubMed ID: 1097435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.