BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 10974544)

  • 21. TFIIH inhibits CDK9 phosphorylation during human immunodeficiency virus type 1 transcription.
    Zhou M; Nekhai S; Bharucha DC; Kumar A; Ge H; Price DH; Egly JM; Brady JN
    J Biol Chem; 2001 Nov; 276(48):44633-40. PubMed ID: 11572868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes.
    Taube R; Lin X; Irwin D; Fujinaga K; Peterlin BM
    Mol Cell Biol; 2002 Jan; 22(1):321-31. PubMed ID: 11739744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a cyclin subunit required for the function of Drosophila P-TEFb.
    Peng J; Marshall NF; Price DH
    J Biol Chem; 1998 May; 273(22):13855-60. PubMed ID: 9593731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional regulation by targeted recruitment of cyclin-dependent CDK9 kinase in vivo.
    Majello B; Napolitano G; Giordano A; Lania L
    Oncogene; 1999 Aug; 18(32):4598-605. PubMed ID: 10467404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CDK9 keeps RNA polymerase II on track.
    Egloff S
    Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclin-dependent kinase-9: an RNAPII kinase at the nexus of cardiac growth and death cascades.
    Sano M; Schneider MD
    Circ Res; 2004 Oct; 95(9):867-76. PubMed ID: 15514168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HIV-1 Tat interaction with RNA polymerase II C-terminal domain (CTD) and a dynamic association with CDK2 induce CTD phosphorylation and transcription from HIV-1 promoter.
    Deng L; Ammosova T; Pumfery A; Kashanchi F; Nekhai S
    J Biol Chem; 2002 Sep; 277(37):33922-9. PubMed ID: 12114499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast.
    Viladevall L; St Amour CV; Rosebrock A; Schneider S; Zhang C; Allen JJ; Shokat KM; Schwer B; Leatherwood JK; Fisher RP
    Mol Cell; 2009 Mar; 33(6):738-51. PubMed ID: 19328067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation.
    Devaiah BN; Singer DS
    J Biol Chem; 2012 Nov; 287(46):38755-66. PubMed ID: 23027873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb.
    Zhang F; Barboric M; Blackwell TK; Peterlin BM
    Genes Dev; 2003 Mar; 17(6):748-58. PubMed ID: 12651893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control.
    Pei Y; Schwer B; Shuman S
    J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1.
    Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL
    Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding.
    Cowling VH; Cole MD
    Mol Cell Biol; 2007 Mar; 27(6):2059-73. PubMed ID: 17242204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat.
    Fujinaga K; Cujec TP; Peng J; Garriga J; Price DH; Graña X; Peterlin BM
    J Virol; 1998 Sep; 72(9):7154-9. PubMed ID: 9696809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclins that don't cycle--cyclin T/cyclin-dependent kinase-9 determines cardiac muscle cell size.
    Sano M; Schneider MD
    Cell Cycle; 2003; 2(2):99-104. PubMed ID: 12695656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulatory functions of Cdk9 and of cyclin T1 in HIV tat transactivation pathway gene expression.
    Romano G; Kasten M; De Falco G; Micheli P; Khalili K; Giordano A
    J Cell Biochem; 1999 Dec; 75(3):357-68. PubMed ID: 10536359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes.
    Dow EC; Liu H; Rice AP
    J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition.
    St Amour CV; Sansó M; Bösken CA; Lee KM; Larochelle S; Zhang C; Shokat KM; Geyer M; Fisher RP
    Mol Cell Biol; 2012 Jul; 32(13):2372-83. PubMed ID: 22508988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting of CDK8 to a promoter-proximal RNA element demonstrates catalysis-dependent activation of gene expression.
    Gold MO; Rice AP
    Nucleic Acids Res; 1998 Aug; 26(16):3784-8. PubMed ID: 9685496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorylation of RNA polymerase II in cardiac hypertrophy: cell enlargement signals converge on cyclin T/Cdk9.
    Kulkarni PA; Sano M; Schneider MD
    Recent Prog Horm Res; 2004; 59():125-39. PubMed ID: 14749500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.