BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 10974714)

  • 1. [L-lysine production by Corynebacterium glutamicum non growing cells].
    Matos MV; Coello N
    Acta Cient Venez; 1999; 50(4):233-9. PubMed ID: 10974714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glucose, fructose and sucrose as carbon sources on kinetics and stoichiometry of lysine production by Corynebacterium glutamicum.
    Kiefer P; Heinzle E; Wittmann C
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):338-43. PubMed ID: 12032807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding.
    Ohnishi J; Hayashi M; Mitsuhashi S; Ikeda M
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):69-75. PubMed ID: 12835923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Microbiological production of L-lysine. I. The substrate specificity for the growth and lysine productivity of Corynebacterium glutamicum ATCC 13286].
    Rŭtkov A
    Acta Microbiol Bulg; 1983; 13():33-9. PubMed ID: 6417982
    [No Abstract]   [Full Text] [Related]  

  • 5. Unstructured model for L-lysine fermentation under controlled dissolved oxygen.
    Ensari S; Kim JH; Lim HC
    Biotechnol Prog; 2003; 19(4):1387-90. PubMed ID: 12892508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility of the metabolism of Corynebacterium glutamicum 2262, a glutamic acid-producing bacterium, in response to temperature upshocks.
    Delaunay S; Lapujade P; Engasser JM; Goergen JL
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):333-7. PubMed ID: 12032806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel gnd mutation leading to increased L-lysine production in Corynebacterium glutamicum.
    Ohnishi J; Katahira R; Mitsuhashi S; Kakita S; Ikeda M
    FEMS Microbiol Lett; 2005 Jan; 242(2):265-74. PubMed ID: 15621447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence.
    Tateno T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):533-41. PubMed ID: 17891388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of L-lysine fermentation: a continuous culture model incorporating oxygen uptake rate.
    Ensari S; Lim HC
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):35-40. PubMed ID: 12835919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
    Peters-Wendisch PG; Schiel B; Wendisch VF; Katsoulidis E; Möckel B; Sahm H; Eikmanns BJ
    J Mol Microbiol Biotechnol; 2001 Apr; 3(2):295-300. PubMed ID: 11321586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor.
    Tay A; Yang ST
    Biotechnol Bioeng; 2002 Oct; 80(1):1-12. PubMed ID: 12209781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytate utilization by genetically engineered lysine-producing Corynebacterium glutamicum.
    Tzvetkov MV; Liebl W
    J Biotechnol; 2008 Apr; 134(3-4):211-7. PubMed ID: 18374441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics of lysine transport in a wild type strain and lysine-producing mutant of Corynebacterium glutamicum].
    Lunts MG; Gusiatiner MM; Kopteva AV; Zhdanova NI
    Prikl Biokhim Mikrobiol; 1986; 22(1):96-101. PubMed ID: 3081884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic characterization of a L-lysine-producing strain by continuous culture.
    Kiss RD; Stephanopoulos G
    Biotechnol Bioeng; 1992 Mar; 39(5):565-74. PubMed ID: 18600983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
    Seibold G; Auchter M; Berens S; Kalinowski J; Eikmanns BJ
    J Biotechnol; 2006 Jul; 124(2):381-91. PubMed ID: 16488498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH.
    Seletzky JM; Noak U; Fricke J; Welk E; Eberhard W; Knocke C; Büchs J
    Biotechnol Bioeng; 2007 Nov; 98(4):800-11. PubMed ID: 17318907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gene homologous to beta-type carbonic anhydrase is essential for the growth of Corynebacterium glutamicum under atmospheric conditions.
    Mitsuhashi S; Ohnishi J; Hayashi M; Ikeda M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):592-601. PubMed ID: 12937954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen limitation is a pitfall during screening for industrial strains.
    Zimmermann HF; Anderlei T; Büchs J; Binder M
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1157-60. PubMed ID: 16575561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.