BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10975072)

  • 1. [Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis].
    Gershanovich VN; Kukanova AIa; Galushkina ZM; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2000; (3):3-7. PubMed ID: 10975072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Shi S; Zhao X
    Biotechnol Lett; 2006 Oct; 28(20):1667-72. PubMed ID: 16912926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.
    Duan YX; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1907-14. PubMed ID: 19779711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Nitrogen assimilation enzymes in Bacillus subtilis mutants with hyperproduction of riboflavin].
    Gershanovich VN; Bol'shakova TN; Dobrynina OIu; Galushkina ZM; Kukanova AIa; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2005; (3):29-34. PubMed ID: 16173396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Zhao X
    FEMS Microbiol Lett; 2007 Jan; 266(2):224-30. PubMed ID: 17233734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1.
    Park YC; Kim SG; Park K; Lee KH; Seo JH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene.
    Park YC; Choi JH; Bennett GN; Seo JH
    J Biotechnol; 2006 Feb; 121(4):508-16. PubMed ID: 16143417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver.
    Novello F; Gumaa JA; McLean P
    Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis.
    Povelainen M; Miasnikov AN
    Biotechnol J; 2006 Feb; 1(2):214-9. PubMed ID: 16892251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the operon of riboflavin biosynthesis in Bacillus subtilis. IV. Regulation of the synthesis of riboflavin synthetase. Investigation of riboflavin transport through the cell membrane.
    Bresler SE; Glazunov EA; Perumov DA
    Sov Genet; 1974 Apr; 8(2):214-22. PubMed ID: 4210982
    [No Abstract]   [Full Text] [Related]  

  • 11. Investigation of the operon of riboflavin biosynthesis in Bacillus subtilis. 3. Production and properties of mutants with a complex regulator genotype.
    Bresler SE; Cherepenko EI; Perumov DA
    Sov Genet; 1974 Feb; 7(11):1466-70. PubMed ID: 4208212
    [No Abstract]   [Full Text] [Related]  

  • 12. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture.
    Rühl M; Zamboni N; Sauer U
    Biotechnol Bioeng; 2010 Mar; 105(4):795-804. PubMed ID: 19882734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42.
    Sawada K; Taki A; Yamakawa T; Seki M
    J Biosci Bioeng; 2009 Nov; 108(5):385-90. PubMed ID: 19804861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Bacillus subtilis mutants resistant to roseoflavin].
    Kukanova AIa; Zhdanov VG; Stepanov AI
    Genetika; 1982 Feb; 18(2):319-21. PubMed ID: 6800882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fusion of Bacillus subtilis and Bacillus licheniformis protoplasts. The mapping of the mutations leading to the supersynthesis of riboflavin in interspecies hybrids].
    Kukanova AIa; Iaroslavtseva NG; Zvenigorodskiĭ VI; Zhdanov VG
    Antibiot Med Biotekhnol; 1986 Mar; 31(3):167-70. PubMed ID: 3087272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Operon of riboflavin biosynthesis in Bacillus subtilis. XVII. A study of the regulatory functions of the intermediate products and their derivatives].
    Perumov DA; Glazunov EA; Gorinchuk GF
    Genetika; 1986 May; 22(5):748-54. PubMed ID: 3089873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Operon of riboflavin biosynthesis in Bacillus subtilis. XV. A study of mutants related to the initial stages of biosynthesis. The origin of the ribityl chain of the riboflavin molecule].
    Bresler SE; Gorinchuk GF; Chernik TP; Perumov DA
    Genetika; 1978; 14(12):2082-90. PubMed ID: 105966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Megacell phenotype and its relation to metabolic alterations in transketolase deficient strain of Bacillus pumilus.
    Srivastava RK; Jaiswal R; Panda D; Wangikar PP
    Biotechnol Bioeng; 2009 Apr; 102(5):1387-97. PubMed ID: 19039788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs.
    Wu QL; Chen T; Gan Y; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.