These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. [Nitrogen assimilation enzymes in Bacillus subtilis mutants with hyperproduction of riboflavin]. Gershanovich VN; Bol'shakova TN; Dobrynina OIu; Galushkina ZM; Kukanova AIa; Stepanov AI Mol Gen Mikrobiol Virusol; 2005; (3):29-34. PubMed ID: 16173396 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis. Zhu Y; Chen X; Chen T; Zhao X FEMS Microbiol Lett; 2007 Jan; 266(2):224-30. PubMed ID: 17233734 [TBL] [Abstract][Full Text] [Related]
6. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1. Park YC; Kim SG; Park K; Lee KH; Seo JH Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635 [TBL] [Abstract][Full Text] [Related]
7. Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. Park YC; Choi JH; Bennett GN; Seo JH J Biotechnol; 2006 Feb; 121(4):508-16. PubMed ID: 16143417 [TBL] [Abstract][Full Text] [Related]
8. The pentose phosphate pathway of glucose metabolism. Hormonal and dietary control of the oxidative and non-oxidative reactions of the cycle in liver. Novello F; Gumaa JA; McLean P Biochem J; 1969 Mar; 111(5):713-25. PubMed ID: 5791534 [TBL] [Abstract][Full Text] [Related]
9. Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis. Povelainen M; Miasnikov AN Biotechnol J; 2006 Feb; 1(2):214-9. PubMed ID: 16892251 [TBL] [Abstract][Full Text] [Related]
10. Study of the operon of riboflavin biosynthesis in Bacillus subtilis. IV. Regulation of the synthesis of riboflavin synthetase. Investigation of riboflavin transport through the cell membrane. Bresler SE; Glazunov EA; Perumov DA Sov Genet; 1974 Apr; 8(2):214-22. PubMed ID: 4210982 [No Abstract] [Full Text] [Related]
11. Investigation of the operon of riboflavin biosynthesis in Bacillus subtilis. 3. Production and properties of mutants with a complex regulator genotype. Bresler SE; Cherepenko EI; Perumov DA Sov Genet; 1974 Feb; 7(11):1466-70. PubMed ID: 4208212 [No Abstract] [Full Text] [Related]
12. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture. Rühl M; Zamboni N; Sauer U Biotechnol Bioeng; 2010 Mar; 105(4):795-804. PubMed ID: 19882734 [TBL] [Abstract][Full Text] [Related]
13. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Sawada K; Taki A; Yamakawa T; Seki M J Biosci Bioeng; 2009 Nov; 108(5):385-90. PubMed ID: 19804861 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway. Zhang M; Zhao X; Chen X; Li M; Wang X Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014 [TBL] [Abstract][Full Text] [Related]
16. [Fusion of Bacillus subtilis and Bacillus licheniformis protoplasts. The mapping of the mutations leading to the supersynthesis of riboflavin in interspecies hybrids]. Kukanova AIa; Iaroslavtseva NG; Zvenigorodskiĭ VI; Zhdanov VG Antibiot Med Biotekhnol; 1986 Mar; 31(3):167-70. PubMed ID: 3087272 [TBL] [Abstract][Full Text] [Related]
17. [Operon of riboflavin biosynthesis in Bacillus subtilis. XVII. A study of the regulatory functions of the intermediate products and their derivatives]. Perumov DA; Glazunov EA; Gorinchuk GF Genetika; 1986 May; 22(5):748-54. PubMed ID: 3089873 [TBL] [Abstract][Full Text] [Related]
18. [Operon of riboflavin biosynthesis in Bacillus subtilis. XV. A study of mutants related to the initial stages of biosynthesis. The origin of the ribityl chain of the riboflavin molecule]. Bresler SE; Gorinchuk GF; Chernik TP; Perumov DA Genetika; 1978; 14(12):2082-90. PubMed ID: 105966 [TBL] [Abstract][Full Text] [Related]
19. Megacell phenotype and its relation to metabolic alterations in transketolase deficient strain of Bacillus pumilus. Srivastava RK; Jaiswal R; Panda D; Wangikar PP Biotechnol Bioeng; 2009 Apr; 102(5):1387-97. PubMed ID: 19039788 [TBL] [Abstract][Full Text] [Related]
20. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Wu QL; Chen T; Gan Y; Chen X; Zhao XM Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]