BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 10975566)

  • 21. Site-directed mutagenesis of the highly perturbed copper site of auracyanin D.
    King JD; Harrington L; Lada BM; He G; Cooley JW; Blankenship RE
    Arch Biochem Biophys; 2014 Dec; 564():237-43. PubMed ID: 25317962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron donation between copper containing nitrite reductases and cupredoxins: the nature of protein-protein interaction in complex formation.
    Murphy LM; Dodd FE; Yousafzai FK; Eady RR; Hasnain SS
    J Mol Biol; 2002 Jan; 315(4):859-71. PubMed ID: 11812153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new molecular mechanics force field for the oxidized form of blue copper proteins.
    Comba P; Remenyi R
    J Comput Chem; 2002 May; 23(7):697-705. PubMed ID: 11948587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loop-contraction mutagenesis of type 1 copper sites.
    Yanagisawa S; Dennison C
    J Am Chem Soc; 2004 Dec; 126(48):15711-9. PubMed ID: 15571393
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular and circulating redox- and metalloregulated eRNA and eRNP: copper ion-structured RNA cytokines (angiotropin ribokines) and bioaptamer targets imparting RNA chaperone and novel biofunctions to S100-EF-hand and disease-associated proteins.
    Wissler JH
    Ann N Y Acad Sci; 2004 Jun; 1022():163-84. PubMed ID: 15251957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of plantacyanin, a basic blue cupredoxin from spinach.
    Einsle O; Mehrabian Z; Nalbandyan R; Messerschmidt A
    J Biol Inorg Chem; 2000 Oct; 5(5):666-72. PubMed ID: 11085657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A test of ligand field molecular mechanics as an efficient alternative to QM/MM for modelling metalloproteins: the structures of oxidised type I copper centres.
    Deeth RJ
    Chem Commun (Camb); 2006 Jun; (24):2551-3. PubMed ID: 16779474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auracyanin A from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus represents an unusual class of small blue copper proteins.
    Van Driessche G; Hu W; Van de Werken G; Selvaraj F; McManus JD; Blankenship RE; Van Beeumen JJ
    Protein Sci; 1999 May; 8(5):947-57. PubMed ID: 10338005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functionally specified protein signatures distinctive for each of the different blue copper proteins.
    Giri AV; Anishetty S; Gautam P
    BMC Bioinformatics; 2004 Sep; 5():127. PubMed ID: 15357880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of auracyanin, a "blue" copper protein from the green thermophilic photosynthetic bacterium Chloroflexus aurantiacus.
    Bond CS; Blankenship RE; Freeman HC; Guss JM; Maher MJ; Selvaraj FM; Wilce MC; Willingham KM
    J Mol Biol; 2001 Feb; 306(1):47-67. PubMed ID: 11178893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy saving electron pathways in proteins.
    Larsson S
    J Biol Inorg Chem; 2000 Oct; 5(5):560-4. PubMed ID: 11085646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular basis for interprotein complex-dependent effects on the redox properties of amicyanin.
    Zhu Z; Cunane LM; Chen Z; Durley RC; Mathews FS; Davidson VL
    Biochemistry; 1998 Dec; 37(49):17128-36. PubMed ID: 9860825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a small metal binding protein from Nitrosomonas europaea.
    Barney BM; LoBrutto R; Francisco WA
    Biochemistry; 2004 Sep; 43(35):11206-13. PubMed ID: 15366930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of metalloprotein reduction potential: compensation phenomena in the reduction thermodynamics of blue copper proteins.
    Battistuzzi G; Bellei M; Borsari M; Canters GW; de Waal E; Jeuken LJ; Ranieri A; Sola M
    Biochemistry; 2003 Aug; 42(30):9214-20. PubMed ID: 12885256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The covalent structure of the blue copper-containing nitrite reductase from Achromobacter xylosoxidans.
    Vandenberghe IH; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Biochem Biophys Res Commun; 1998 Jun; 247(3):734-40. PubMed ID: 9647763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blue copper proteins as a model for investigating electron transfer processes within polypeptide matrices.
    Farver O; Pecht I
    Biophys Chem; 1994 May; 50(1-2):203-16. PubMed ID: 8011935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus.
    Gunne M; Höppner A; Hagedoorn PL; Urlacher VB
    FEBS J; 2014 Sep; 281(18):4307-18. PubMed ID: 24548692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution.
    Hart PJ; Nersissian AM; Herrmann RG; Nalbandyan RM; Valentine JS; Eisenberg D
    Protein Sci; 1996 Nov; 5(11):2175-83. PubMed ID: 8931136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper.
    Banci L; Bertini I; Del Conte R
    Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preferred sites and pathways for electron transfer in blue copper proteins.
    Farver O; Pecht I
    Prog Clin Biol Res; 1988; 274():269-83. PubMed ID: 3406028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.