These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10975668)

  • 21. Mechanical impedance and absorbed power of hand-arm under x(h)-axis vibration and role of hand forces and posture.
    Aldien Y; Marcotte P; Rakheja S; Boileau PE
    Ind Health; 2005 Jul; 43(3):495-508. PubMed ID: 16100926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of contact conditions on the mechanical impedance of the finger.
    Mann NA; Griffin MJ
    Cent Eur J Public Health; 1996 Feb; 4(1):46-9. PubMed ID: 8996670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vertical vibration of seated subjects: effects of posture, vibration level, and frequency.
    Griffin MJ
    Aviat Space Environ Med; 1975 Mar; 46(3):269-76. PubMed ID: 1115729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurements of the impedance of the hand and arm.
    Burström L
    Int Arch Occup Environ Health; 1990; 62(6):431-9. PubMed ID: 2246060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-linear characteristics in the dynamic responses of seated subjects exposed to vertical whole-body vibration.
    Matsumoto Y; Griffin MJ
    J Biomech Eng; 2002 Oct; 124(5):527-32. PubMed ID: 12405595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency weightings for fore-and-aft vibration at the back: effect of contact location, contact area, and body posture.
    Morioka M; Griffin MJ
    Ind Health; 2010; 48(5):538-49. PubMed ID: 20953071
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of acceleration on the mechanical impedance response of a primate model exposed to sinusoidal vibration.
    Smith SD; Kazarian LE
    Ann Biomed Eng; 1994; 22(1):78-87. PubMed ID: 8060029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of backrest inclination based on biodynamic response study for prevention of low back pain.
    Shibata N; Maeda S
    Med Eng Phys; 2010 Jul; 32(6):577-83. PubMed ID: 20299270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation.
    Kavounoudias A; Roll R; Roll JP
    J Physiol; 2001 May; 532(Pt 3):869-78. PubMed ID: 11313452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs.
    Pel JJ; Bagheri J; van Dam LM; van den Berg-Emons HJ; Horemans HL; Stam HJ; van der Steen J
    Med Eng Phys; 2009 Oct; 31(8):937-44. PubMed ID: 19523867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodynamic response of the seated human body to single-axis and dual-axis vibration: effect of backrest and non-linearity.
    Qiu Y; Griffin MJ
    Ind Health; 2012; 50(1):37-51. PubMed ID: 22146145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transmission of vertical whole body vibration to the human body.
    Kiiski J; Heinonen A; Järvinen TL; Kannus P; Sievänen H
    J Bone Miner Res; 2008 Aug; 23(8):1318-25. PubMed ID: 18348698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration.
    Liu C; Qiu Y; Griffin MJ
    J Biomech; 2017 Aug; 61():176-182. PubMed ID: 28780186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of the seated human body to whole-body vertical vibration: biodynamic responses to mechanical shocks.
    Zhou Z; Griffin MJ
    Ergonomics; 2017 Mar; 60(3):333-346. PubMed ID: 27206993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The apparent mass of the seated human exposed to single-axis and multi-axis whole-body vibration.
    Mansfield NJ; Maeda S
    J Biomech; 2007; 40(11):2543-51. PubMed ID: 17187806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intervertebral motion during vibration.
    Pope MH; Kaigle AM; Magnusson M; Broman H; Hansson T
    Proc Inst Mech Eng H; 1991; 205(1):39-44. PubMed ID: 1670074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical impedance of the sitting human body in single-axis compared to multi-axis whole-body vibration exposure.
    Holmlund P; Lundström R
    Clin Biomech (Bristol, Avon); 2001; 16 Suppl 1():S101-10. PubMed ID: 11275348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanical impedance of the human body in sitting and standing position at low frequencies.
    COERMANN RR
    Hum Factors; 1962 Oct; 4():227-53. PubMed ID: 14021944
    [No Abstract]   [Full Text] [Related]  

  • 39. Whole-body vibration during passive standing in individuals with spinal cord injury: effects of plate choice, frequency, amplitude, and subject's posture on vibration propagation.
    Alizadeh-Meghrazi M; Masani K; Popovic MR; Craven BC
    PM R; 2012 Dec; 4(12):963-75. PubMed ID: 23102716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Head stabilization on a continuously oscillating platform: the effect of a proprioceptive disturbance on the balancing strategy.
    De Nunzio AM; Nardone A; Schieppati M
    Exp Brain Res; 2005 Aug; 165(2):261-72. PubMed ID: 15856203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.