BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 10975900)

  • 1. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition.
    Calamante F; Gadian DG; Connelly A
    Magn Reson Med; 2000 Sep; 44(3):466-73. PubMed ID: 10975900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI.
    Ibaraki M; Shimosegawa E; Toyoshima H; Takahashi K; Miura S; Kanno I
    J Cereb Blood Flow Metab; 2005 Mar; 25(3):378-90. PubMed ID: 15674238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of regional tracer delay on CBF in healthy subjects measured with dynamic susceptibility contrast-enhanced MRI: comparison with 15O-PET.
    Ibaraki M; Shimosegawa E; Toyoshima H; Ishigame K; Ito H; Takahashi K; Miura S; Kanno I
    Magn Reson Med Sci; 2005; 4(1):27-34. PubMed ID: 16127251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging.
    Murase K; Yamazaki Y; Shinohara M
    Magn Reson Med Sci; 2003 Jul; 2(2):85-95. PubMed ID: 16210825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reference-based maximum upslope: a CBF quantification method without using arterial input function in dynamic susceptibility contrast MRI.
    Kimura T; Kusahara H
    Magn Reson Med Sci; 2009; 8(3):107-20. PubMed ID: 19783874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bolus dispersion issues related to the quantification of perfusion MRI data.
    Calamante F
    J Magn Reson Imaging; 2005 Dec; 22(6):718-22. PubMed ID: 16261569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of clinical data of nonlinear stochastic deconvolution versus block-circulant singular value decomposition for quantitative dynamic susceptibility contrast magnetic resonance imaging.
    Peruzzo D; Zanderigo F; Bertoldo A; Pillonetto G; Cosottini M; Cobelli C
    Magn Reson Imaging; 2011 Sep; 29(7):927-36. PubMed ID: 21616625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DSC perfusion MRI-Quantification and reduction of systematic errors arising in areas of reduced cerebral blood flow.
    Carpenter TK; Armitage PA; Bastin ME; Wardlaw JM
    Magn Reson Med; 2006 Jun; 55(6):1342-9. PubMed ID: 16683256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconvolution analysis of dynamic contrast-enhanced data based on singular value decomposition optimized by generalized cross validation.
    Murase K; Yamazaki Y; Miyazaki S
    Magn Reson Med Sci; 2004; 3(4):165-75. PubMed ID: 16093635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging.
    Murase K; Shinohara M; Yamazaki Y
    Phys Med Biol; 2001 Dec; 46(12):3147-59. PubMed ID: 11768497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization.
    Calamante F; Gadian DG; Connelly A
    Magn Reson Med; 2003 Dec; 50(6):1237-47. PubMed ID: 14648572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfusion quantification by model-free arterial spin labeling using nonlinear stochastic regularization deconvolution.
    Ahlgren A; Wirestam R; Petersen ET; Ståhlberg F; Knutsson L
    Magn Reson Med; 2013 Nov; 70(5):1470-80. PubMed ID: 23281031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arterial input function in perfusion MRI: a comprehensive review.
    Calamante F
    Prog Nucl Magn Reson Spectrosc; 2013 Oct; 74():1-32. PubMed ID: 24083460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-parametric deconvolution using Bézier curves for quantification of cerebral perfusion in dynamic susceptibility contrast MRI.
    Chakwizira A; Ahlgren A; Knutsson L; Wirestam R
    MAGMA; 2022 Oct; 35(5):791-804. PubMed ID: 35025071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics.
    Calamante F; Yim PJ; Cebral JR
    Neuroimage; 2003 Jun; 19(2 Pt 1):341-53. PubMed ID: 12814584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging.
    Murase K; Kikuchi K; Miki H; Shimizu T; Ikezoe J
    J Magn Reson Imaging; 2001 May; 13(5):797-806. PubMed ID: 11329204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral blood flow estimation from perfusion-weighted MRI using FT-based MMSE filtering method.
    Sakoglu U; Sood R
    Magn Reson Imaging; 2008 Apr; 26(3):313-22. PubMed ID: 18158225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke.
    Calamante F; Willats L; Gadian DG; Connelly A
    Magn Reson Med; 2006 May; 55(5):1180-5. PubMed ID: 16598717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix.
    Wu O; Østergaard L; Weisskoff RM; Benner T; Rosen BR; Sorensen AG
    Magn Reson Med; 2003 Jul; 50(1):164-74. PubMed ID: 12815691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative perfusion imaging in carotid artery stenosis using dynamic susceptibility contrast-enhanced magnetic resonance imaging.
    Lythgoe DJ; Ostergaard L; William SC; Cluckie A; Buxton-Thomas M; Simmons A; Markus HS
    Magn Reson Imaging; 2000 Jan; 18(1):1-11. PubMed ID: 10642097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.