These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10976105)

  • 1. Redox switch of hsp33 has a novel zinc-binding motif.
    Jakob U; Eser M; Bardwell JC
    J Biol Chem; 2000 Dec; 275(49):38302-10. PubMed ID: 10976105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The zinc-dependent redox switch domain of the chaperone Hsp33 has a novel fold.
    Won HS; Low LY; Guzman RD; Martinez-Yamout M; Jakob U; Dyson HJ
    J Mol Biol; 2004 Aug; 341(4):893-9. PubMed ID: 15328602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of proteolytic fragments of the redox-sensitive Hsp33 with constitutive chaperone activity.
    Kim SJ; Jeong DG; Chi SW; Lee JS; Ryu SE
    Nat Struct Biol; 2001 May; 8(5):459-66. PubMed ID: 11323724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the redox-regulated molecular chaperone Hsp33--a two-step mechanism.
    Graumann J; Lilie H; Tang X; Tucker KA; Hoffmann JH; Vijayalakshmi J; Saper M; Bardwell JC; Jakob U
    Structure; 2001 May; 9(5):377-87. PubMed ID: 11377198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of the redox-regulated chaperone Hsp33 by domain unfolding.
    Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U
    J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms.
    Segal N; Shapira M
    Plant J; 2015 Jun; 82(5):850-60. PubMed ID: 25892083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-regulated molecular chaperones.
    Graf PC; Jakob U
    Cell Mol Life Sci; 2002 Oct; 59(10):1624-31. PubMed ID: 12475172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone.
    Barbirz S; Jakob U; Glocker MO
    J Biol Chem; 2000 Jun; 275(25):18759-66. PubMed ID: 10764757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism.
    Janda I; Devedjiev Y; Derewenda U; Dauter Z; Bielnicki J; Cooper DR; Graf PC; Joachimiak A; Jakob U; Derewenda ZS
    Structure; 2004 Oct; 12(10):1901-7. PubMed ID: 15458638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc center as redox switch--new function for an old motif.
    Ilbert M; Graf PC; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):835-46. PubMed ID: 16771674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of constitutively monomeric E. coli Hsp33 mutant with chaperone activity.
    Chi SW; Jeong DG; Woo JR; Lee HS; Park BC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    FEBS Lett; 2011 Feb; 585(4):664-70. PubMed ID: 21266175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 2.2 A crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity.
    Vijayalakshmi J; Mukhergee MK; Graumann J; Jakob U; Saper MA
    Structure; 2001 May; 9(5):367-75. PubMed ID: 11377197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone.
    Cremers CM; Reichmann D; Hausmann J; Ilbert M; Jakob U
    J Biol Chem; 2010 Apr; 285(15):11243-51. PubMed ID: 20139072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaperone activity with a redox switch.
    Jakob U; Muse W; Eser M; Bardwell JC
    Cell; 1999 Feb; 96(3):341-52. PubMed ID: 10025400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of cysteine residues in Zn2 to zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ.
    Shi YY; Tang W; Hao SF; Wang CC
    Biochemistry; 2005 Feb; 44(5):1683-9. PubMed ID: 15683252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique Unfoldase/Aggregase Activity of a Molecular Chaperone Hsp33 in its Holding-Inactive State.
    Jo KS; Kim JH; Ryu KS; Kang JS; Wang CY; Lee YS; Seo MD; Lee YH; Won HS
    J Mol Biol; 2019 Mar; 431(7):1468-1480. PubMed ID: 30822413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a redox-regulated chaperone network.
    Hoffmann JH; Linke K; Graf PC; Lilie H; Jakob U
    EMBO J; 2004 Jan; 23(1):160-8. PubMed ID: 14685279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress.
    Kang HJ; Heo DH; Choi SW; Kim KN; Shim J; Kim CW; Sung HC; Yun CW
    Biochem Biophys Res Commun; 2007 Jul; 358(3):743-50. PubMed ID: 17512907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cold atmospheric pressure plasma-generated species superoxide, singlet oxygen and atomic oxygen activate the molecular chaperone Hsp33.
    Dirks T; Krewing M; Vogel K; Bandow JE
    J R Soc Interface; 2023 Oct; 20(207):20230300. PubMed ID: 37876273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33.
    Raman B; Siva Kumar LV; Ramakrishna T; Mohan Rao C
    FEBS Lett; 2001 Jan; 489(1):19-24. PubMed ID: 11231006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.