These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 10976105)
21. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process. Lee YS; Lee J; Ryu KS; Lee Y; Jung TG; Jang JH; Sim DW; Kim EH; Seo MD; Lee KW; Won HS J Mol Biol; 2015 Dec; 427(24):3850-61. PubMed ID: 26453802 [TBL] [Abstract][Full Text] [Related]
22. Crystal structure of Hsp33 chaperone (TM1394) from Thermotoga maritima at 2.20 A resolution. Jaroszewski L; Schwarzenbacher R; McMullan D; Abdubek P; Agarwalla S; Ambing E; Axelrod H; Biorac T; Canaves JM; Chiu HJ; Deacon AM; DiDonato M; Elsliger MA; Godzik A; Grittini C; Grzechnik SK; Hale J; Hampton E; Han GW; Haugen J; Hornsby M; Klock HE; Koesema E; Kreusch A; Kuhn P; Lesley SA; Miller MD; Moy K; Nigoghossian E; Paulsen J; Quijano K; Reyes R; Rife C; Spraggon G; Stevens RC; van den Bedem H; Velasquez J; Vincent J; White A; Wolf G; Xu Q; Hodgson KO; Wooley J; Wilson IA Proteins; 2005 Nov; 61(3):669-73. PubMed ID: 16167343 [No Abstract] [Full Text] [Related]
23. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold. Landro JA; Schimmel P Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131 [TBL] [Abstract][Full Text] [Related]
24. Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. Kumar RA; Koc A; Cerny RL; Gladyshev VN J Biol Chem; 2002 Oct; 277(40):37527-35. PubMed ID: 12145281 [TBL] [Abstract][Full Text] [Related]
25. Theoretical insights into the mechanism of redox switch in heat shock protein Hsp33. Enescu M; Kassim R; Ramseyer C; Cardey B J Biol Inorg Chem; 2015 Apr; 20(3):555-62. PubMed ID: 25637463 [TBL] [Abstract][Full Text] [Related]
26. Zn(2+) binding properties of single-point mutants of the C-terminal zinc finger of the HIV-1 nucleocapsid protein: evidence of a critical role of cysteine 49 in Zn(2+) dissociation. Bombarda E; Cherradi H; Morellet N; Roques BP; Mély Y Biochemistry; 2002 Apr; 41(13):4312-20. PubMed ID: 11914077 [TBL] [Abstract][Full Text] [Related]
27. Beyond transcription--new mechanisms for the regulation of molecular chaperones. Winter J; Jakob U Crit Rev Biochem Mol Biol; 2004; 39(5-6):297-317. PubMed ID: 15763707 [TBL] [Abstract][Full Text] [Related]
28. Cys redox reactions and metal binding of a Cys2His2 zinc finger. Larabee JL; Hocker JR; Hanas JS Arch Biochem Biophys; 2005 Feb; 434(1):139-49. PubMed ID: 15629117 [TBL] [Abstract][Full Text] [Related]
29. The redox-switch domain of Hsp33 functions as dual stress sensor. Ilbert M; Horst J; Ahrens S; Winter J; Graf PC; Lilie H; Jakob U Nat Struct Mol Biol; 2007 Jun; 14(6):556-63. PubMed ID: 17515905 [TBL] [Abstract][Full Text] [Related]
30. A Role of Metastable Regions and Their Connectivity in the Inactivation of a Redox-Regulated Chaperone and Its Inter-Chaperone Crosstalk. Rimon O; Suss O; Goldenberg M; Fassler R; Yogev O; Amartely H; Propper G; Friedler A; Reichmann D Antioxid Redox Signal; 2017 Nov; 27(15):1252-1267. PubMed ID: 28394178 [TBL] [Abstract][Full Text] [Related]
31. Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. Martinez-Yamout M; Legge GB; Zhang O; Wright PE; Dyson HJ J Mol Biol; 2000 Jul; 300(4):805-18. PubMed ID: 10891270 [TBL] [Abstract][Full Text] [Related]
32. Engineering a cysteine ligand into the zinc binding site of human carbonic anhydrase II. Kiefer LL; Krebs JF; Paterno SA; Fierke CA Biochemistry; 1993 Sep; 32(38):9896-900. PubMed ID: 8399158 [TBL] [Abstract][Full Text] [Related]
33. Oligomeric Hsp33 with enhanced chaperone activity: gel filtration, cross-linking, and small angle x-ray scattering (SAXS) analysis. Akhtar MW; Srinivas V; Raman B; Ramakrishna T; Inobe T; Maki K; Arai M; Kuwajima K; Rao ChM J Biol Chem; 2004 Dec; 279(53):55760-9. PubMed ID: 15494414 [TBL] [Abstract][Full Text] [Related]
34. Engineering the zinc binding site of human carbonic anhydrase II: structure of the His-94-->Cys apoenzyme in a new crystalline form. Alexander RS; Kiefer LL; Fierke CA; Christianson DW Biochemistry; 1993 Feb; 32(6):1510-8. PubMed ID: 8431430 [TBL] [Abstract][Full Text] [Related]
35. Defining Hsp33's Redox-regulated Chaperone Activity and Mapping Conformational Changes on Hsp33 Using Hydrogen-deuterium Exchange Mass Spectrometry. Fassler R; Edinger N; Rimon O; Reichmann D J Vis Exp; 2018 Jun; (136):. PubMed ID: 29939186 [TBL] [Abstract][Full Text] [Related]
36. Substitution of conserved methionines by leucines in chloroplast small heat shock protein results in loss of redox-response but retained chaperone-like activity. Gustavsson N; Kokke BP; Anzelius B; Boelens WC; Sundby C Protein Sci; 2001 Sep; 10(9):1785-93. PubMed ID: 11514669 [TBL] [Abstract][Full Text] [Related]
37. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions. Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513 [TBL] [Abstract][Full Text] [Related]
38. Redox-regulated chaperones. Kumsta C; Jakob U Biochemistry; 2009 Jun; 48(22):4666-76. PubMed ID: 19368357 [TBL] [Abstract][Full Text] [Related]
39. The roles of the two zinc binding sites in DnaJ. Linke K; Wolfram T; Bussemer J; Jakob U J Biol Chem; 2003 Nov; 278(45):44457-66. PubMed ID: 12941935 [TBL] [Abstract][Full Text] [Related]
40. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. Szabo A; Korszun R; Hartl FU; Flanagan J EMBO J; 1996 Jan; 15(2):408-17. PubMed ID: 8617216 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]