These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Real-time computing without stable states: a new framework for neural computation based on perturbations. Maass W; Natschläger T; Markram H Neural Comput; 2002 Nov; 14(11):2531-60. PubMed ID: 12433288 [TBL] [Abstract][Full Text] [Related]
4. General-purpose computation with neural networks: a survey of complexity theoretic results. Síma J; Orponen P Neural Comput; 2003 Dec; 15(12):2727-78. PubMed ID: 14629867 [TBL] [Abstract][Full Text] [Related]
5. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Casey M Neural Comput; 1996 Aug; 8(6):1135-78. PubMed ID: 8768390 [TBL] [Abstract][Full Text] [Related]
6. Partially pre-calculated weights for the backpropagation learning regime and high accuracy function mapping using continuous input RAM-based sigma-pi nets. Neville RS; Stonham TJ; Glover RJ Neural Netw; 2000 Jan; 13(1):91-110. PubMed ID: 10935462 [TBL] [Abstract][Full Text] [Related]
7. Attractive periodic sets in discrete-time recurrent networks (with emphasis on fixed-point stability and bifurcations in two-neuron networks). Tino P; Horne BG; Giles CL Neural Comput; 2001 Jun; 13(6):1379-414. PubMed ID: 11387050 [TBL] [Abstract][Full Text] [Related]
8. Dynamic On-line Clustering and State Extraction: An Approach to Symbolic Learning. Mozer M; Das S Neural Netw; 1998 Jan; 11(1):53-64. PubMed ID: 12662848 [TBL] [Abstract][Full Text] [Related]
11. Natural signal classification by neural cliques and phase-locked attractors. Raichelgauz I; Odinaev K; Zeevi YY Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6693-7. PubMed ID: 17959488 [TBL] [Abstract][Full Text] [Related]
12. Computational capabilities of recurrent NARX neural networks. Siegelmann HT; Horne BG; Giles CL IEEE Trans Syst Man Cybern B Cybern; 1997; 27(2):208-15. PubMed ID: 18255858 [TBL] [Abstract][Full Text] [Related]
13. A Finite State Machine Approach to Algorithmic Lateral Inhibition for Real-Time Motion Detection López MT; Bermúdez A; Montero F; Sánchez JL; Fernández-Caballero A Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751584 [TBL] [Abstract][Full Text] [Related]
14. The computational power of interactive recurrent neural networks. Cabessa J; Siegelmann HT Neural Comput; 2012 Apr; 24(4):996-1019. PubMed ID: 22295978 [TBL] [Abstract][Full Text] [Related]
15. Discrete recurrent neural networks for grammatical inference. Zeng Z; Goodman RM; Smyth P IEEE Trans Neural Netw; 1994; 5(2):320-30. PubMed ID: 18267800 [TBL] [Abstract][Full Text] [Related]
16. Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants. Omlin CW; Giles CL Neural Comput; 1996 May; 8(4):675-96. PubMed ID: 8624958 [TBL] [Abstract][Full Text] [Related]
17. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony. Lagorce X; Benosman R Neural Comput; 2015 Nov; 27(11):2261-317. PubMed ID: 26378879 [TBL] [Abstract][Full Text] [Related]
18. On the computational power of Elman-style recurrent networks. Kremer SC IEEE Trans Neural Netw; 1995; 6(4):1000-4. PubMed ID: 18263388 [TBL] [Abstract][Full Text] [Related]
19. Sensitive Finite-State Computations Using a Distributed Network With a Noisy Network Attractor. Ashwin P; Postlethwaite C IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5847-5858. PubMed ID: 29993668 [TBL] [Abstract][Full Text] [Related]
20. Extracting finite-state representations from recurrent neural networks trained on chaotic symbolic sequences. Tino P; Köteles M IEEE Trans Neural Netw; 1999; 10(2):284-302. PubMed ID: 18252527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]