BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 10976523)

  • 1. Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria.
    Kubo I; Kinst-Hori I; Chaudhuri SK; Kubo Y; Sánchez Y; Ogura T
    Bioorg Med Chem; 2000 Jul; 8(7):1749-55. PubMed ID: 10976523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism.
    Kubo I; Kinst-Hori I
    J Agric Food Chem; 1999 Oct; 47(10):4121-5. PubMed ID: 10552777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase.
    Xie LP; Chen QX; Huang H; Wang HZ; Zhang RQ
    Biochemistry (Mosc); 2003 Apr; 68(4):487-91. PubMed ID: 12765534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase inhibitor isolated from the leaves of Zanthoxylum piperitum.
    Jeong CH; Shim KH
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1984-7. PubMed ID: 15388977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase.
    Xie LP; Chen QX; Huang H; Liu XD; Chen HT; Zhang RQ
    Int J Biochem Cell Biol; 2003 Dec; 35(12):1658-66. PubMed ID: 12962705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavonoids as mushroom tyrosinase inhibitors: a fluorescence quenching study.
    Kim D; Park J; Kim J; Han C; Yoon J; Kim N; Seo J; Lee C
    J Agric Food Chem; 2006 Feb; 54(3):935-41. PubMed ID: 16448205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory mechanism of red globe amaranth on tyrosinase.
    Mu Y; Li L; Zhou Y; Wei HL; Hu SQ
    J Cosmet Sci; 2013; 64(2):99-110. PubMed ID: 23578833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity.
    Mira L; Fernandez MT; Santos M; Rocha R; Florêncio MH; Jennings KR
    Free Radic Res; 2002 Nov; 36(11):1199-208. PubMed ID: 12592672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids.
    Uda Y; Price KR; Williamson G; Rhodes MJ
    Cancer Lett; 1997 Dec; 120(2):213-6. PubMed ID: 9461039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects of 5,6,7-trihydroxyflavones on tyrosinase.
    Gao H; Nishida J; Saito S; Kawabata J
    Molecules; 2007 Jan; 12(1):86-97. PubMed ID: 17693955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosinase inhibitory constituents from the bark of Peltophorum dasyrachis (yellow batai).
    Fujiwara M; Yagi N; Miyazawa M
    Nat Prod Res; 2011 Sep; 25(16):1540-8. PubMed ID: 21391111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of 4-cyanobenzaldehyde and 4-cyanobenzoic acid on mushroom (Agaricus bisporus) tyrosinase.
    Chen Q; Chen QX; Qiu L; Song KK; Huang H
    J Protein Chem; 2003 Nov; 22(7-8):607-12. PubMed ID: 14714727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosinase inhibitory polyphenols from roots of Morus lhou.
    Jeong SH; Ryu YB; Curtis-Long MJ; Ryu HW; Baek YS; Kang JE; Lee WS; Park KH
    J Agric Food Chem; 2009 Feb; 57(4):1195-203. PubMed ID: 19166303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots.
    Wang Y; Curtis-Long MJ; Lee BW; Yuk HJ; Kim DW; Tan XF; Park KH
    Bioorg Med Chem; 2014 Feb; 22(3):1115-20. PubMed ID: 24412339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidative constituents in Heterotheca inuloides.
    Haraguchi H; Ishikawa H; Sanchez Y; Ogura T; Kubo Y; Kubo I
    Bioorg Med Chem; 1997 May; 5(5):865-71. PubMed ID: 9208098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory effect of non-steroidal anti-inflammatory drugs (NSAIDs) on the monophenolase and diphenolase activities of mushroom tyrosinase.
    Sato K; Toriyama M
    Int J Mol Sci; 2011; 12(6):3998-4008. PubMed ID: 21747720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism.
    Fan M; Zhang G; Hu X; Xu X; Gong D
    Food Res Int; 2017 Oct; 100(Pt 1):226-233. PubMed ID: 28873682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially.
    Ciolino HP; Daschner PJ; Yeh GC
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):715-22. PubMed ID: 10359656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl.
    Cassetta A; Stojan J; Krastanova I; Kristan K; Brunskole Švegelj M; Lamba D; Lanišnik Rižner T
    J Steroid Biochem Mol Biol; 2017 Jul; 171():80-93. PubMed ID: 28259640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity.
    Matsuda H; Morikawa T; Toguchida I; Yoshikawa M
    Chem Pharm Bull (Tokyo); 2002 Jun; 50(6):788-95. PubMed ID: 12045333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.