These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Mekhfi H; Veksler V; Mateo P; Maupoil V; Rochette L; Ventura-Clapier R Circ Res; 1996 Jun; 78(6):1016-27. PubMed ID: 8635232 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. Viña J; Gimeno A; Sastre J; Desco C; Asensi M; Pallardó FV; Cuesta A; Ferrero JA; Terada LS; Repine JE IUBMB Life; 2000 Jun; 49(6):539-44. PubMed ID: 11032249 [TBL] [Abstract][Full Text] [Related]
10. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle. Rubanyi GM; Vanhoutte PM Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520 [TBL] [Abstract][Full Text] [Related]
11. Stunned myocardium and oxygen free radicals--sarcolemmal membrane damage due to oxygen free radicals. Kaneko M; Hayashi H; Kobayashi A; Yamazaki N; Dhalla NS Jpn Circ J; 1991 Sep; 55(9):885-92. PubMed ID: 1834872 [TBL] [Abstract][Full Text] [Related]
12. D-2-hydroxyglutaric acid inhibits creatine kinase activity from cardiac and skeletal muscle of young rats. da Silva CG; Bueno AR; Schuck PF; Leipnitz G; Ribeiro CA; Wannmacher CM; Wyse AT; Wajner M Eur J Clin Invest; 2003 Oct; 33(10):840-7. PubMed ID: 14511354 [TBL] [Abstract][Full Text] [Related]
13. Free oxygen radicals contribute to platelet aggregation and cyclic flow variations in stenosed and endothelium-injured canine coronary arteries. Ikeda H; Koga Y; Oda T; Kuwano K; Nakayama H; Ueno T; Toshima H; Michael LH; Entman ML J Am Coll Cardiol; 1994 Dec; 24(7):1749-56. PubMed ID: 7963124 [TBL] [Abstract][Full Text] [Related]
14. Antioxidant defences in rat, pig, guinea pig, and human hearts: comparison with xanthine oxidoreductase activity. Janssen M; van der Meer P; de Jong JW Cardiovasc Res; 1993 Nov; 27(11):2052-7. PubMed ID: 8287417 [TBL] [Abstract][Full Text] [Related]
15. Reduction of calcium channel antagonist binding sites by oxygen free radicals in rat heart. Kaneko M; Lee SL; Wolf CM; Dhalla NS J Mol Cell Cardiol; 1989 Sep; 21(9):935-43. PubMed ID: 2553987 [TBL] [Abstract][Full Text] [Related]
17. Free radical inactivation of rabbit muscle creatinine kinase: catalysis by physiological and hydrolyzed ICRF-187 (ICRF-198) iron chelates. Thomas C; Carr AC; Winterbourn CC Free Radic Res; 1994; 21(6):387-97. PubMed ID: 7834053 [TBL] [Abstract][Full Text] [Related]
18. Oligodendroglial cell death induced by oxygen radicals and its protection by catalase. Kim YS; Kim SU J Neurosci Res; 1991 May; 29(1):100-6. PubMed ID: 1886163 [TBL] [Abstract][Full Text] [Related]
19. Loss of the metal binding properties of metallothionein induced by hydrogen peroxide and free radicals. Jiménez I; Gotteland M; Zarzuelo A; Uauy R; Speisky H Toxicology; 1997 Jun; 120(1):37-46. PubMed ID: 9160107 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of creatine kinase during the interaction of indomethacin with horseradish peroxidase and hydrogen peroxide: involvement of indomethacin radicals. Miura T; Muraoka S; Fujimoto Y Chem Biol Interact; 2001 Mar; 134(1):13-25. PubMed ID: 11248219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]