BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 10977584)

  • 1. ICTS, an interventional cardiology training system.
    Cotin S; Dawson SL; Meglan D; Shaffer DW; Ferrell MA; Bardsley RS; Morgan FM; Nagano T; Nikom J; Sherman P; Walterman MT; Wendlandt J
    Stud Health Technol Inform; 2000; 70():59-65. PubMed ID: 10977584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time interactive simulator for percutaneous coronary revascularization procedures.
    Wang Y; Chui C; Lim H; Cai Y; Mak K
    Comput Aided Surg; 1998; 3(5):211-27. PubMed ID: 10207646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing face validity of a vascular interventional training system.
    Winder J; Zheng H; Hughes S; Kelly B; Wilson C; Gallagher A
    Stud Health Technol Inform; 2004; 98():410-5. PubMed ID: 15544317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catheter simulation system CathI: from patient data generation to cardiological training systems.
    Rebholz P; Kornmesser U; Hesser J
    Stud Health Technol Inform; 2004; 98():313-5. PubMed ID: 15544297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High degree of realism in teaching percutaneous coronary interventions by combining a virtual reality trainer with a full scale patient simulator.
    Schuetz M; Moenk S; Vollmer J; Kurz S; Mollnau H; Post F; Heinrichs W
    Simul Healthc; 2008; 3(4):242-6. PubMed ID: 19088669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D visible and palpable simulation using dynamic pressure model based on cardiac morphology.
    Nakao M; Komori M; Matsuda T; Takahashi T
    Stud Health Technol Inform; 2001; 81():362-4. PubMed ID: 11317769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile VR for hand-eye coordination in simulated PTCA.
    Cai YY; Chui CK; Ye XZ; Fan Z; Anderson JH
    Comput Biol Med; 2006 Feb; 36(2):167-80. PubMed ID: 16389076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation as a component of catheter-based training.
    Dayal R; Faries PL; Lin SC; Bernheim J; Hollenbeck S; DeRubertis B; Trocciola S; Rhee J; McKinsey J; Morrissey NJ; Kent KC
    J Vasc Surg; 2004 Dec; 40(6):1112-7. PubMed ID: 15622364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Striking a new path in medical education. CAMPUS, an interactive, case-based training system].
    Jahnke C; Elsässer A; Heinrichs G; Klar R; Bode C; Nordt TK
    Med Klin (Munich); 2006 May; 101(5):365-72. PubMed ID: 16685482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Core curriculum for the training of pediatric invasive/interventional cardiologists: report of the Society for Cardiac Angiography and Interventions Committee on Pediatric Cardiology Training Standards.
    Ruiz CE; Mullins CE; Rochini AP; Radtke WA; Hijazi ZM; O'Laughlin MP; Bouceck MM; Gillette PC; Hagler DJ
    Cathet Cardiovasc Diagn; 1996 Apr; 37(4):409-24. PubMed ID: 8721697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tutorial platform suitable for surgical simulator training (SimMentor).
    Røtnes JS; Kaasa J; Westgaard G; Eriksen EM; Hvidsten PO; Strøm K; Sørhus V; Halbwachs Y; Haug E; Grimnes M; Fontenelle H; Ekeberg T; Thomassen JB; Elle OJ; Fosse E
    Stud Health Technol Inform; 2002; 85():419-25. PubMed ID: 15458125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions.
    Alderliesten T; Konings MK; Niessen WJ
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):29-38. PubMed ID: 17260853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of haptic feedback in laparoscopic simulation training.
    Panait L; Akkary E; Bell RL; Roberts KE; Dudrick SJ; Duffy AJ
    J Surg Res; 2009 Oct; 156(2):312-6. PubMed ID: 19631336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D visualization and stereographic techniques for medical research and education.
    Rydmark M; Kling-Petersen T; Pascher R; Philip F
    Stud Health Technol Inform; 2001; 81():434-9. PubMed ID: 11317785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interventional radiology simulation: prepare for a virtual revolution in training.
    Gould DA
    J Vasc Interv Radiol; 2007 Apr; 18(4):483-90. PubMed ID: 17446538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating extracorporeal membrane oxygenation emergencies to improve human performance. Part I: methodologic and technologic innovations.
    Anderson JM; Boyle KB; Murphy AA; Yaeger KA; LeFlore J; Halamek LP
    Simul Healthc; 2006; 1(4):220-7. PubMed ID: 19088593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimanual haptic workstation for laparoscopic surgery simulation.
    Devarajan V; Scott D; Jones D; Rege R; Eberhart R; Lindahl C; Tanguy P; Fernandez R
    Stud Health Technol Inform; 2001; 81():126-8. PubMed ID: 11317725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework for the design of a novel haptic-based medical training simulator.
    Tahmasebi AM; Hashtrudi-Zaad K; Thompson D; Abolmaesumi P
    IEEE Trans Inf Technol Biomed; 2008 Sep; 12(5):658-66. PubMed ID: 18779081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The visible ear simulator: a public PC application for GPU-accelerated haptic 3D simulation of ear surgery based on the visible ear data.
    Sorensen MS; Mosegaard J; Trier P
    Otol Neurotol; 2009 Jun; 30(4):484-7. PubMed ID: 19546800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.