BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10977590)

  • 1. Orthopedic rehabilitation using the "Rutgers ankle" interface.
    Girone M; Burdea G; Bouzit M; Popescu V; Deutsch JE
    Stud Health Technol Inform; 2000; 70():89-95. PubMed ID: 10977590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PC-based telerehabilitation system with force feedback.
    Popescu V; Burdea G; Bouzit M; Girone M; Hentz V
    Stud Health Technol Inform; 1999; 62():261-7. PubMed ID: 10538369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared virtual environments for telerehabilitation.
    Popescu GV; Burdea G; Boian R
    Stud Health Technol Inform; 2002; 85():362-8. PubMed ID: 15458115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computerized hand diagnostic/rehabilitation system using a force feedback glove.
    Burdea G; Deshpande S; Popescu V; Langrana N; Gomez D; DiPaolo D; Kanter M
    Stud Health Technol Inform; 1997; 39():141-50. PubMed ID: 10168911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A virtual-reality-based telerehabilitation system with force feedback.
    Popescu VG; Burdea GC; Bouzit M; Hentz VR
    IEEE Trans Inf Technol Biomed; 2000 Mar; 4(1):45-51. PubMed ID: 10761773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual environment system for motor tele-rehabilitation.
    Piron L; Tonin P; Atzori AM; Zanotti E; Massaro C; Trivello E; Dam M
    Stud Health Technol Inform; 2002; 85():355-61. PubMed ID: 15458114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telerehabilitation services using web-based telecommunication.
    Grimes GJ; Dubois H; Grimes SJ; Greenleaf WJ; Rothenburg S; Cunningham D
    Stud Health Technol Inform; 2000; 70():113-8. PubMed ID: 10977523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS.
    Frisoli A; Bergamasco M; Carboncini MC; Rossi B
    Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time 3D avatars for tele-rehabilitation in virtual reality.
    Kurillo G; Koritnik T; Bajd T; Bajcsy R
    Stud Health Technol Inform; 2011; 163():290-6. PubMed ID: 21335807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality-enhanced stroke rehabilitation.
    Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality-based orthopedic telerehabilitation.
    Burdea G; Popescu V; Hentz V; Colbert K
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):430-2. PubMed ID: 11001524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An easy to use and affordable home-based personal eHealth system for chronic disease management based on free open source software.
    Burkow TM; Vognild LK; Krogstad T; Borch N; Ostengen G; Bratvold A; Risberg MJ
    Stud Health Technol Inform; 2008; 136():83-8. PubMed ID: 18487712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BrainTrain: brain simulator for medical VR application.
    Panchaphongsaphak B; Burgkart R; Riener R
    Stud Health Technol Inform; 2005; 111():378-84. PubMed ID: 15718764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. eBaViR, easy balance virtual rehabilitation system: a study with patients.
    González-Fernández M; Gil-Gómez JA; Alcañiz M; Noé E; Colomer C
    Stud Health Technol Inform; 2010; 154():61-6. PubMed ID: 20543271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.
    Kim JY; Mills JK; Vette AH; Popovic MR
    J Biomech Eng; 2007 Dec; 129(6):838-47. PubMed ID: 18067387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Navigation by walking around: using the Pressure Mat to move in virtual worlds.
    Couvillion W; Lopez R; Ling J
    Stud Health Technol Inform; 2002; 85():103-9. PubMed ID: 15458068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computerized visual feedback: an adjunct to robotic-assisted gait training.
    Banz R; Bolliger M; Colombo G; Dietz V; Lünenburger L
    Phys Ther; 2008 Oct; 88(10):1135-45. PubMed ID: 18772279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and development of a novel balancer with variable difficulty for training and evaluation.
    Ang WT; Tan UX; Tan HG; Myo T; Ng CK; Koh KL; Cheam BS
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):325-31. PubMed ID: 19117193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Evaluation of a long-distance data transmission network in foot and ankle surgery].
    Craviari T; Besse JL; Curvale G; Maestro M; Tourné Y
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Sep; 89(5):433-42. PubMed ID: 13679743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.
    Farjadian AB; Nabian M; Hartman A; Corsino J; Mavroidis C; Holden MK
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1186-9. PubMed ID: 25570176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.