These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10977590)

  • 21. Rehab@home: a tool for home-based motor function rehabilitation.
    Faria C; Silva J; Campilho A
    Disabil Rehabil Assist Technol; 2015 Jan; 10(1):67-74. PubMed ID: 24070452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in ankle range of motion before and after exercise in 2 tape conditions.
    Purcell SB; Schuckman BE; Docherty CL; Schrader J; Poppy W
    Am J Sports Med; 2009 Feb; 37(2):383-9. PubMed ID: 19088055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Home-based physical therapy intervention with adherence-enhancing strategies versus clinic-based management for patients with ankle sprains.
    Bassett SF; Prapavessis H
    Phys Ther; 2007 Sep; 87(9):1132-43. PubMed ID: 17609331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Store-and-feedforward adaptive gaming system for hand-finger motion tracking in telerehabilitation.
    Lockery D; Peters JF; Ramanna S; Shay BL; Szturm T
    IEEE Trans Inf Technol Biomed; 2011 May; 15(3):467-73. PubMed ID: 21536526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design and preliminary evaluation of a portable instrument for assisting physiotherapists and occupational therapists in the rehabilitation of the hand.
    Durand LG; Ionescu GD; Blanchard M; Durand J; Tremblay S; Caya J; Guardo R
    J Rehabil Res Dev; 1989; 26(2):47-54. PubMed ID: 2724152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pedbothome: Robotically-Assisted Ankle Rehabilitation System For Children With Cerebral Palsy.
    Cleary K; Monfaredi R; Salvador T; Talari HF; Coley C; Kovelman S; Belschner J; Alyamani S; Schladen M; Evans SH
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():13-20. PubMed ID: 31374600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A remote data access architecture for home-monitoring health-care applications.
    Lin CH; Young ST; Kuo TS
    Med Eng Phys; 2007 Mar; 29(2):199-204. PubMed ID: 16621655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intensive care telemedicine: evaluating a model for proactive remote monitoring and intervention in the critical care setting.
    Groves RH; Holcomb BW; Smith ML
    Stud Health Technol Inform; 2008; 131():131-46. PubMed ID: 18305328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and implementation of a home stroke telerehabilitation system.
    Durfee W; Carey J; Nuckley D; Deng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2422-5. PubMed ID: 19965201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Telerehabilitation: remote multimedia-supported assistance and mobile monitoring of balance training outcomes can facilitate the clinical staff's effort.
    Krpič A; Savanović A; Cikajlo I
    Int J Rehabil Res; 2013 Jun; 36(2):162-71. PubMed ID: 23337324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotics, telesurgery and telementoring--their position in modern urological laparoscopy.
    Rassweiler J; Frede T
    Arch Esp Urol; 2002; 55(6):610-28. PubMed ID: 12224160
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bracing and rehabilitation--what's new.
    Arnold BL; Docherty CL
    Clin Sports Med; 2004 Jan; 23(1):83-95. PubMed ID: 15062585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A surgical simulator for planning and performing repair of cleft lips.
    Schendel S; Montgomery K; Sorokin A; Lionetti G
    J Craniomaxillofac Surg; 2005 Aug; 33(4):223-8. PubMed ID: 15975810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cervical motion assessment using virtual reality.
    Sarig-Bahat H; Weiss PL; Laufer Y
    Spine (Phila Pa 1976); 2009 May; 34(10):1018-24. PubMed ID: 19404177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Jerusalem TeleRehabilitation System, a new low-cost, haptic rehabilitation approach.
    Sugarman H; Dayan E; Weisel-Eichler A; Tiran J
    Cyberpsychol Behav; 2006 Apr; 9(2):178-82. PubMed ID: 16640475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual enriched environments in paediatric neuropsychological rehabilitation following traumatic brain injury: Feasibility, benefits and challenges.
    Penn PR; Rose FD; Johnson DA
    Dev Neurorehabil; 2009 Feb; 12(1):32-43. PubMed ID: 19283532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A compliance and satisfaction with home exercise: a comparison of computer-assisted video instruction and routine rehabilitation practice.
    Lysack C; Dama M; Neufeld S; Andreassi E
    J Allied Health; 2005; 34(2):76-82. PubMed ID: 16032913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual reality-based post-stroke hand rehabilitation.
    Boian R; Sharma A; Han C; Merians A; Burdea G; Adamovich S; Recce M; Tremaine M; Poizner H
    Stud Health Technol Inform; 2002; 85():64-70. PubMed ID: 15458061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Passive Exercise Adaptation for Ankle Rehabilitation Based on Learning Control Framework.
    Abu-Dakka FJ; Valera A; Escalera JA; Abderrahim M; Page A; Mata V
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33142669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinect-based rehabilitation exercises system: therapist involved approach.
    Yao L; Xu H; Li A
    Biomed Mater Eng; 2014; 24(6):2611-8. PubMed ID: 25226964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.