These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10978069)

  • 1. Quasistationary high confinement discharges with trans-greenwald density on TEXTOR-94.
    Mank G; Messiaen AM; Ongena J; Unterberg B; Dumortier P; Finken KH; Jaspers R; Koslowski HR; Kramer-Flecken A; Rapp J; Samm U; van Wassenhove G ; Weynants RR
    Phys Rev Lett; 2000 Sep; 85(11):2312-5. PubMed ID: 10978069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New advanced operational regime on the W7-AS stellarator.
    McCormick K; Grigull P; Burhenn R; Brakel R; Ehmler H; Feng Y; Gadelmeier F; Giannone L; Hildebrandt D; Hirsch M; Jaenicke R; Kisslinger J; Klinger T; Klose S; Knauer JP; König R; Kühner G; Laqua HP; Naujoks D; Niedermeyer H; Pasch E; Ramasubramanian N; Rust N; Sardei F; Wagner F; Weller A; Wenzel U; Werner A
    Phys Rev Lett; 2002 Jul; 89(1):015001. PubMed ID: 12097046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-density and high-confinement tokamak plasma regime for fusion energy.
    Ding S; Garofalo AM; Wang HQ; Weisberg DB; Li ZY; Jian X; Eldon D; Victor BS; Marinoni A; Hu QM; Carvalho IS; Odstrčil T; Wang L; Hyatt AW; Osborne TH; Gong XZ; Qian JP; Huang J; McClenaghan J; Holcomb CT; Hanson JM
    Nature; 2024 May; 629(8012):555-560. PubMed ID: 38658758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching high poloidal beta at Greenwald density with internal transport barrier close to full noninductive current drive.
    Hobirk J; Wolf RC; Gruber O; Gude A; Günter S; Kurzan B; Maraschek M; McCarthy PJ; Meister H; Peeters AG; Pereverzev GV; Stober J; Treutterer W;
    Phys Rev Lett; 2001 Aug; 87(8):085002. PubMed ID: 11497949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment.
    Maingi R; Osborne TH; Leblanc BP; Bell RE; Manickam J; Snyder PB; Menard JE; Mansfield DK; Kugel HW; Kaita R; Gerhardt SP; Sabbagh SA; Kelly FA;
    Phys Rev Lett; 2009 Aug; 103(7):075001. PubMed ID: 19792649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the first H-mode discharges in the national spherical torus experiment.
    Maingi R; Bell MG; Bell RE; Bush CE; Fredrickson ED; Gates DA; Kaye SM; Kugel HW; LeBlanc BP; Menard JE; Mueller D; Sabbagh SA; Stutman D; Taylor G; Johnson DW; Kaita R; Maqueda RJ; Ono M; Paoletti F; Paul SF; Peng YK; Roquemore AL; Skinner CH; Soukhanovskii VA; Synakowski EJ
    Phys Rev Lett; 2002 Jan; 88(3):035003. PubMed ID: 11801067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasistationary Plasma Predator-Prey System of Coupled Turbulence, Drive, and Sheared E×B Flow During High Performance DIII-D Tokamak Discharges.
    Barada K; Rhodes TL; Burrell KH; Zeng L; Bardóczi L; Chen X; Muscatello CM; Peebles WA
    Phys Rev Lett; 2018 Mar; 120(13):135002. PubMed ID: 29694164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-confinement regime at high beta(N) values due to a changed behavior of the neoclassical tearing modes.
    Günter S; Gude A; Maraschek M; Sesnic S; Zohm H; Howell DF;
    Phys Rev Lett; 2001 Dec; 87(27 Pt 1):275001. PubMed ID: 11800885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-H transition in the mega-amp spherical tokamak.
    Akers RJ; Counsell GF; Sykes A; Appel LC; Arends ER; Byrom C; Carolan PG; Conway NJ; Cunningham G; Dnestrovskij A; Dnestrovskij YN; Field AR; Fielding SJ; Gryaznevich M; Helander P; Kirk A; Korsholm S; Martin R; Meyer H; Nightingale MP; Roach CM; Shevchenko V; Tournianski M; Walsh MJ; Warrick CD; ;
    Phys Rev Lett; 2002 Jan; 88(3):035002. PubMed ID: 11801066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Density Limit Scaling in Tokamaks Based on Edge Turbulent Transport and Implications for ITER.
    Giacomin M; Pau A; Ricci P; Sauter O; Eich T; The Asdex Upgrade Team ; Jet Contributors ; The Tcv Team
    Phys Rev Lett; 2022 May; 128(18):185003. PubMed ID: 35594105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triggered confinement enhancement and pedestal expansion in high-confinement-mode discharges in the national spherical torus experiment.
    Maingi R; Bell RE; Canik JM; Gerhardt SP; Kaye SM; Leblanc BP; Osborne TH; Bell MG; Fredrickson ED; Lee KC; Menard JE; Park JK; Sabbagh SA;
    Phys Rev Lett; 2010 Sep; 105(13):135004. PubMed ID: 21230781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the dynamic ergodic divertor on the density limit in TEXTOR.
    Liang Y; Koslowski HR; Kelly FA; Tokar MZ; Loozen X; Bertschinger G; Biel W; Finken KH; Jakubowski MW; Krämer-Flecken A; Zimmermann O; Lehnen M; Sergienko G; Wolf RC;
    Phys Rev Lett; 2005 Mar; 94(10):105003. PubMed ID: 15783492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of edge-localized mode intensity using high-repetition-rate pellet injection in tokamak H-mode plasmas.
    Baylor LR; Commaux N; Jernigan TC; Brooks NH; Combs SK; Evans TE; Fenstermacher ME; Isler RC; Lasnier CJ; Meitner SJ; Moyer RA; Osborne TH; Parks PB; Snyder PB; Strait EJ; Unterberg EA; Loarte A
    Phys Rev Lett; 2013 Jun; 110(24):245001. PubMed ID: 25165932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of a low- to high-confinement transition theory with experimental data from DIII-D.
    Guzdar PN; Kleva RG; Groebner RJ; Gohil P
    Phys Rev Lett; 2002 Dec; 89(26):265004. PubMed ID: 12484830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promising High-Confinement Regime for Steady-State Fusion.
    Xu GS; Yang QQ; Yan N; Wang YF; Xu XQ; Guo HY; Maingi R; Wang L; Qian JP; Gong XZ; Chan VS; Zhang T; Zang Q; Li YY; Zhang L; Hu GH; Wan BN
    Phys Rev Lett; 2019 Jun; 122(25):255001. PubMed ID: 31347864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral measurements of runaway electrons by a scanning probe in the TEXTOR tokamak.
    Kudyakov T; Finken KH; Jakubowski M; Lehnen M; Xu Y; Willi O
    Rev Sci Instrum; 2008 Oct; 79(10):10F126. PubMed ID: 19044610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR.
    Kruezi U; Stoschus H; Schweer B; Sergienko G; Samm U
    Rev Sci Instrum; 2012 Jun; 83(6):065107. PubMed ID: 22755662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of solvation and confinement on the trans-gauche isomerization reaction in n-butane.
    Travis KP; Searles DJ
    J Chem Phys; 2006 Oct; 125(16):164501. PubMed ID: 17092099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotation reversal bifurcation and energy confinement saturation in tokamak Ohmic L-mode plasmas.
    Rice JE; Cziegler I; Diamond PH; Duval BP; Podpaly YA; Reinke ML; Ennever PC; Greenwald MJ; Hughes JW; Ma Y; Marmar ES; Porkolab M; Tsujii N; Wolfe SM
    Phys Rev Lett; 2011 Dec; 107(26):265001. PubMed ID: 22243160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions.
    Lehnen M; Bozhenkov SA; Abdullaev SS; ; Jakubowski MW
    Phys Rev Lett; 2008 Jun; 100(25):255003. PubMed ID: 18643669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.