These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 10978089)
1. Mechanisms for the development of unstable dimension variability and the breakdown of shadowing in coupled chaotic systems. Barreto E; So P Phys Rev Lett; 2000 Sep; 85(12):2490-3. PubMed ID: 10978089 [TBL] [Abstract][Full Text] [Related]
2. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
3. Method for measuring unstable dimension variability from time series. McCullen NJ; Moresco P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046203. PubMed ID: 16711913 [TBL] [Abstract][Full Text] [Related]
4. Chaotic bursting at the onset of unstable dimension variability. Viana RL; Pinto SE; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046213. PubMed ID: 12443305 [TBL] [Abstract][Full Text] [Related]
5. The stability of adaptive synchronization of chaotic systems. Sorrentino F; Barlev G; Cohen AB; Ott E Chaos; 2010 Mar; 20(1):013103. PubMed ID: 20370258 [TBL] [Abstract][Full Text] [Related]
6. Two-state on-off intermittency caused by unstable dimension variability in periodically forced drift waves. Galuzio PP; Lopes SR; Viana RL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056211. PubMed ID: 22181488 [TBL] [Abstract][Full Text] [Related]
7. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
8. A note on chaotic unimodal maps and applications. Zhou CT; He XT; Yu MY; Chew LY; Wang XG Chaos; 2006 Sep; 16(3):033113. PubMed ID: 17014218 [TBL] [Abstract][Full Text] [Related]
9. Unstable dimension variability in coupled chaotic systems. Lai YC; Lerner D; Williams K; Grebogi C Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5445-54. PubMed ID: 11970417 [TBL] [Abstract][Full Text] [Related]
10. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
11. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
12. Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016213. PubMed ID: 14995699 [TBL] [Abstract][Full Text] [Related]
13. Riddled basins of chaotic synchronization and unstable dimension variability in coupled Lorenz-like systems. Czajkowski BM; Viana RL Chaos; 2024 Sep; 34(9):. PubMed ID: 39240693 [TBL] [Abstract][Full Text] [Related]
14. Using ergodicity of chaotic systems for improving the global properties of the delayed feedback control method. Pyragas K; Pyragas V Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):067201. PubMed ID: 20365303 [TBL] [Abstract][Full Text] [Related]
15. Topological degree in analysis of chaotic behavior in singularly perturbed systems. Pokrovskii A; Zhezherun A Chaos; 2008 Jun; 18(2):023130. PubMed ID: 18601496 [TBL] [Abstract][Full Text] [Related]
16. Universal and nonuniversal features in shadowing dynamics of nonhyperbolic chaotic systems with unstable-dimension variability. Do Y; Lai YC; Liu Z; Kostelich EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035202. PubMed ID: 12689122 [TBL] [Abstract][Full Text] [Related]
17. Characterization of stickiness by means of recurrence. Zou Y; Thiel M; Romano MC; Kurths J Chaos; 2007 Dec; 17(4):043101. PubMed ID: 18163765 [TBL] [Abstract][Full Text] [Related]
18. Adaptive coupling for achieving stable synchronization of chaos. Sorrentino F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056206. PubMed ID: 20365059 [TBL] [Abstract][Full Text] [Related]