These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10978166)

  • 21. Bohr-effect and buffering capacity of hemocyanin from the tarantula E. californicum.
    Hellmann N
    Biophys Chem; 2004 Apr; 109(1):157-67. PubMed ID: 15059668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis of the lactate-dependent allosteric regulation of oxygen binding in arthropod hemocyanin.
    Hirota S; Tanaka N; Micetic I; Di Muro P; Nagao S; Kitagishi H; Kano K; Magliozzo RS; Peisach J; Beltramini M; Bubacco L
    J Biol Chem; 2010 Jun; 285(25):19338-45. PubMed ID: 20406810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxygen binding properties of stripped (calcium ion and magnesium ion free) hemocyanin from the scorpion Leirus quinquestriatus.
    Klarman A; Daniel E
    Biochemistry; 1980 Nov; 19(23):5176-80. PubMed ID: 7448162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper-metallothioneins in the American lobster, Homarus americanus: potential role as Cu(I) donors to apohemocyanin.
    Brouwer M; Whaling P; Engel DW
    Environ Health Perspect; 1986 Mar; 65():93-100. PubMed ID: 3709470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcuticular urate accumulation in an American lobster (Homarus americanus).
    Battison AL
    Vet Pathol; 2013 May; 50(3):451-6. PubMed ID: 22566215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic control of co-operativity in the oxygen binding of Panulirus interruptus hemocyanin.
    Kuiper HA; Antonini E; Brunori M
    J Mol Biol; 1977 Nov; 116(3):569-76. PubMed ID: 22762
    [No Abstract]   [Full Text] [Related]  

  • 27. Analysis of oxygen binding to Panulirus japonicus hemocyanin. The effect of divalent cations on the allosteric transition.
    Makino N
    Eur J Biochem; 1986 Jan; 154(1):49-55. PubMed ID: 3943525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L.
    Sullivan B; Bonaventura J; Bonaventura C
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2558-62. PubMed ID: 4210212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of the equilibration of O2 with Panulirus interruptus hemocyanin subunits a, b and c.
    Andrew CR; McKillop KP; Sykes AG
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):105-14. PubMed ID: 8448173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermediate states of assembly in the dissociation of gastropod hemocyanin by hydrostatic pressure.
    Bonafe CF; Araujo JR; Silva JL
    Biochemistry; 1994 Mar; 33(9):2651-60. PubMed ID: 8117728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Primary structure of hemocyanin from Palinurus vulgaris.
    Jekel PA; Neuteboom B; Beintema JJ
    Comp Biochem Physiol B Biochem Mol Biol; 1996 Oct; 115(2):243-6. PubMed ID: 8939004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences.
    Magnus KA; Hazes B; Ton-That H; Bonaventura C; Bonaventura J; Hol WG
    Proteins; 1994 Aug; 19(4):302-9. PubMed ID: 7984626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding.
    Fariselli P; Bottoni A; Bernardi F; Casadio R
    Protein Sci; 1999 Jul; 8(7):1546-50. PubMed ID: 10422845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hemocyanins in spiders. XXII. Range of allosteric interaction in a four-hexamer hemocyanin. Co-operativity and Bohr effect in dissociation intermediates.
    Savel-Niemann A; Markl J; Linzen B
    J Mol Biol; 1988 Nov; 204(2):385-95. PubMed ID: 3221391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extreme thermostability of tarantula hemocyanin.
    Sterner R; Vogl T; Hinz HJ; Penz F; Hoff R; Föll R; Decker H
    FEBS Lett; 1995 May; 364(1):9-12. PubMed ID: 7750550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding mechanism of an SH3 domain studied by NMR and ITC.
    Demers JP; Mittermaier A
    J Am Chem Soc; 2009 Apr; 131(12):4355-67. PubMed ID: 19267471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isothermal acid-titration calorimetry for evaluating the pH dependence of protein stability.
    Nakamura S; Kidokoro S
    Biophys Chem; 2004 May; 109(2):229-49. PubMed ID: 15110942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molluscan Hemocyanins.
    Kato S; Matsui T; Tanaka Y
    Subcell Biochem; 2020; 94():195-218. PubMed ID: 32189300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of oxygen and carbon monoxide to the hemocyanin from the spiny lobster.
    Connelly PR; Johnson CR; Robert CH; Bak HJ; Gill SJ
    J Mol Biol; 1989 Jun; 207(4):829-32. PubMed ID: 2760932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus.
    Lundbäck T; Hansson H; Knapp S; Ladenstein R; Härd T
    J Mol Biol; 1998 Mar; 276(4):775-86. PubMed ID: 9500918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.