These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10978174)

  • 81. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Mannitol-specific carrier protein from the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system can be extracted as a dimer from the membrane.
    Roossien FF; Robillard GT
    Biochemistry; 1984 Nov; 23(24):5682-5. PubMed ID: 6441590
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Conformational state of the SecYEG-bound SecA probed by single tryptophan fluorescence spectroscopy.
    Natale P; den Blaauwen T; van der Does C; Driessen AJ
    Biochemistry; 2005 May; 44(17):6424-32. PubMed ID: 15850376
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Characterization of lens alpha-crystallin tryptophan microenvironments by room temperature phosphorescence spectroscopy.
    Berger JW; Vanderkooi JM
    Biochemistry; 1989 Jun; 28(13):5501-8. PubMed ID: 2775720
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Insertion and folding of the amino-terminal amphiphilic signal sequences of the mannitol and glucitol permeases of Escherichia coli.
    Portlock SH; Lee Y; Tomich JM; Tamm LK
    J Biol Chem; 1992 Jun; 267(16):11017-22. PubMed ID: 1597443
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Structure and dynamics of a CheY-binding domain of the chemotaxis kinase CheA determined by nuclear magnetic resonance spectroscopy.
    McEvoy MM; Muhandiram DR; Kay LE; Dahlquist FW
    Biochemistry; 1996 May; 35(18):5633-40. PubMed ID: 8639521
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The thermal stability and domain interactions of the mannitol permease of Escherichia coli. A differential scanning calorimetry study.
    Meijberg W; Schuurman-Wolters GK; Boer H; Scheek RM; Robillard GT
    J Biol Chem; 1998 Aug; 273(33):20785-94. PubMed ID: 9694823
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Enzyme IIMtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system: identification of the activity-linked cysteine on the mannitol carrier.
    Pas HH; Robillard GT
    Biochemistry; 1988 Jul; 27(15):5515-9. PubMed ID: 3140889
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: mannitol-specific EII contains two phosphoryl binding sites per monomer and one high-affinity mannitol binding site per dimer.
    Pas HH; ten Hoeve-Duurkens RH; Robillard GT
    Biochemistry; 1988 Jul; 27(15):5520-5. PubMed ID: 3140890
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of the two tryptophan residues of the lactose repressor from Escherichia coli by phosphorescence and optical detection of magnetic resonance.
    Burns LE; Maki AH; Spotts R; Matthews KS
    Biochemistry; 1993 Nov; 32(47):12821-9. PubMed ID: 8251503
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Sugar transport by the bacterial phosphotransferase system. The intrinsic fluorescence of enzyme I.
    Neyroz P; Brand L; Roseman S
    J Biol Chem; 1987 Nov; 262(33):15900-7. PubMed ID: 3316210
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Time-resolved intrinsic fluorescence of Enzyme I. The monomer/dimer transition.
    Chauvin F; Toptygin D; Roseman S; Brand L
    Biophys Chem; 1992 Oct; 44(3):163-73. PubMed ID: 1420946
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Phosphorescence lifetime of tryptophan in proteins.
    Gonnelli M; Strambini GB
    Biochemistry; 1995 Oct; 34(42):13847-57. PubMed ID: 7577979
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Group translocation of glucose and other carbohydrates by the bacterial phosphotransferase system.
    Erni B
    Int Rev Cytol; 1992; 137():127-48. PubMed ID: 1428669
    [No Abstract]   [Full Text] [Related]  

  • 96. Time-resolved room temperature tryptophan phosphorescence in proteins.
    Schauerte JA; Steel DG; Gafni A
    Methods Enzymol; 1997; 278():49-71. PubMed ID: 9170309
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence.
    Strambini GB; Cioni P; Felicioli RA
    Biochemistry; 1987 Aug; 26(16):4968-75. PubMed ID: 3663638
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Structure of an EIIC sugar transporter trapped in an inward-facing conformation.
    Ren Z; Lee J; Moosa MM; Nian Y; Hu L; Xu Z; McCoy JG; Ferreon ACM; Im W; Zhou M
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5962-5967. PubMed ID: 29784777
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A mechanism to alter reversibly the oligomeric state of a membrane-bound protein demonstrated with Escherichia coli EIImtl in solution.
    Broos J; Hoeve-Duurkens RT; Robillard GT
    J Biol Chem; 1998 Feb; 273(7):3865-70. PubMed ID: 9461568
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of nucleic acid binding on the triplet state properties of tetrapeptides containing tryptophan and 6-methyltryptophan: a study by phosphorescence and ODMR spectroscopy.
    Misra A; Ozarowski A; Casas-Finet JR; Maki AH
    Biochemistry; 2000 Nov; 39(45):13772-80. PubMed ID: 11076516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.