These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 10978321)
1. Interfacial asparagine residues within an amide tetrad contribute to Max helix-loop-helix leucine zipper homodimer stability. Tchan MC; Choy KJ; Mackay JP; Lyons AT; Bains NP; Weiss AS J Biol Chem; 2000 Dec; 275(48):37454-61. PubMed ID: 10978321 [TBL] [Abstract][Full Text] [Related]
2. Asn(78) and His(81) form a destabilizing locus within the Max HLH-LZ homodimer. Tchan MC; Weiss AS FEBS Lett; 2001 Dec; 509(2):177-80. PubMed ID: 11741584 [TBL] [Abstract][Full Text] [Related]
3. The leucine zippers of the HLH-LZ proteins Max and c-Myc preferentially form heterodimers. Muhle-Goll C; Nilges M; Pastore A Biochemistry; 1995 Oct; 34(41):13554-64. PubMed ID: 7577944 [TBL] [Abstract][Full Text] [Related]
4. Improving the thermodynamic stability of the leucine zipper of max increases the stability of its b-HLH-LZ:E-box complex. Jean-François N; Frédéric G; Raymund W; Benoit C; Lavigne P J Mol Biol; 2003 Mar; 326(5):1577-95. PubMed ID: 12595267 [TBL] [Abstract][Full Text] [Related]
5. Preferential heterodimeric parallel coiled-coil formation by synthetic Max and c-Myc leucine zippers: a description of putative electrostatic interactions responsible for the specificity of heterodimerization. Lavigne P; Kondejewski LH; Houston ME; Sönnichsen FD; Lix B; Skyes BD; Hodges RS; Kay CM J Mol Biol; 1995 Dec; 254(3):505-20. PubMed ID: 7490766 [TBL] [Abstract][Full Text] [Related]
6. Nuclear magnetic resonance characterization of the Jun leucine zipper domain: unusual properties of coiled-coil interfacial polar residues. Junius FK; Mackay JP; Bubb WA; Jensen SA; Weiss AS; King GF Biochemistry; 1995 May; 34(18):6164-74. PubMed ID: 7742321 [TBL] [Abstract][Full Text] [Related]
7. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483 [TBL] [Abstract][Full Text] [Related]
8. The dimerization stability of the HLH-LZ transcription protein family is modulated by the leucine zippers: a CD and NMR study of TFEB and c-Myc. Muhle-Goll C; Gibson T; Schuck P; Schubert D; Nalis D; Nilges M; Pastore A Biochemistry; 1994 Sep; 33(37):11296-306. PubMed ID: 7727380 [TBL] [Abstract][Full Text] [Related]
9. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350 [TBL] [Abstract][Full Text] [Related]
10. SREBP-1 dimerization specificity maps to both the helix-loop-helix and leucine zipper domains: use of a dominant negative. Rishi V; Gal J; Krylov D; Fridriksson J; Boysen MS; Mandrup S; Vinson C J Biol Chem; 2004 Mar; 279(12):11863-74. PubMed ID: 14702347 [TBL] [Abstract][Full Text] [Related]
11. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max. Davis LJ; Halazonetis TD Oncogene; 1993 Jan; 8(1):125-32. PubMed ID: 8423990 [TBL] [Abstract][Full Text] [Related]
12. Toward the elucidation of the structural determinants responsible for the molecular recognition between Mad1 and Max. Montagne M; Naud JF; McDuff FO; Lavigne P Biochemistry; 2005 Sep; 44(38):12860-9. PubMed ID: 16171401 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of Max: role of basic, helix-loop-helix/leucine zipper domains in DNA binding, dimerization and regulation of Myc-mediated transcriptional activation. Reddy CD; Dasgupta P; Saikumar P; Dudek H; Rauscher FJ; Reddy EP Oncogene; 1992 Oct; 7(10):2085-92. PubMed ID: 1408152 [TBL] [Abstract][Full Text] [Related]
15. New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. Beaulieu ME; McDuff FO; Frappier V; Montagne M; Naud JF; Lavigne P J Mol Recognit; 2012 Jul; 25(7):414-26. PubMed ID: 22733550 [TBL] [Abstract][Full Text] [Related]
16. Design and properties of a Myc derivative that efficiently homodimerizes. Soucek L; Helmer-Citterich M; Sacco A; Jucker R; Cesareni G; Nasi S Oncogene; 1998 Nov; 17(19):2463-72. PubMed ID: 9824157 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the Myc and Max interaction specificity with lambda repressor-HLH domain fusions. Marchetti A; Abril-Marti M; Illi B; Cesareni G; Nasi S J Mol Biol; 1995 May; 248(3):541-50. PubMed ID: 7752223 [TBL] [Abstract][Full Text] [Related]
18. The crystal structure of an intact human Max-DNA complex: new insights into mechanisms of transcriptional control. Brownlie P; Ceska T; Lamers M; Romier C; Stier G; Teo H; Suck D Structure; 1997 Apr; 5(4):509-20. PubMed ID: 9115440 [TBL] [Abstract][Full Text] [Related]
19. The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. Sauvé S; Tremblay L; Lavigne P J Mol Biol; 2004 Sep; 342(3):813-32. PubMed ID: 15342239 [TBL] [Abstract][Full Text] [Related]
20. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity. Crouch DH; Fisher F; Clark W; Jayaraman PS; Goding CR; Gillespie DA Oncogene; 1993 Jul; 8(7):1849-55. PubMed ID: 8510929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]