These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 10978345)
1. Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. He W; Lu L; Zhang X; El-Hodiri HM; Chen CK; Slep KC; Simon MI; Jamrich M; Wensel TG J Biol Chem; 2000 Nov; 275(47):37093-100. PubMed ID: 10978345 [TBL] [Abstract][Full Text] [Related]
2. Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule. McEntaffer RL; Natochin M; Artemyev NO Biochemistry; 1999 Apr; 38(16):4931-7. PubMed ID: 10213594 [TBL] [Abstract][Full Text] [Related]
3. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. Skiba NP; Martemyanov KA; Elfenbein A; Hopp JA; Bohm A; Simonds WF; Arshavsky VY J Biol Chem; 2001 Oct; 276(40):37365-72. PubMed ID: 11495924 [TBL] [Abstract][Full Text] [Related]
4. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein. Skiba NP; Hopp JA; Arshavsky VY J Biol Chem; 2000 Oct; 275(42):32716-20. PubMed ID: 10973941 [TBL] [Abstract][Full Text] [Related]
5. Complexes of the G protein subunit gbeta 5 with the regulators of G protein signaling RGS7 and RGS9. Characterization in native tissues and in transfected cells. Witherow DS; Wang Q; Levay K; Cabrera JL; Chen J; Willars GB; Slepak VZ J Biol Chem; 2000 Aug; 275(32):24872-80. PubMed ID: 10840031 [TBL] [Abstract][Full Text] [Related]
6. Noncatalytic domains of RGS9-1.Gbeta 5L play a decisive role in establishing its substrate specificity. Martemyanov KA; Arshavsky VY J Biol Chem; 2002 Sep; 277(36):32843-8. PubMed ID: 12093815 [TBL] [Abstract][Full Text] [Related]
7. The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9. Skiba NP; Yang CS; Huang T; Bae H; Hamm HE J Biol Chem; 1999 Mar; 274(13):8770-8. PubMed ID: 10085118 [TBL] [Abstract][Full Text] [Related]
8. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Chen CK; Burns ME; He W; Wensel TG; Baylor DA; Simon MI Nature; 2000 Feb; 403(6769):557-60. PubMed ID: 10676965 [TBL] [Abstract][Full Text] [Related]
9. RGS proteins: lessons from the RGS9 subfamily. Cowan CW; He W; Wensel TG Prog Nucleic Acid Res Mol Biol; 2001; 65():341-59. PubMed ID: 11008492 [TBL] [Abstract][Full Text] [Related]
10. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Slep KC; Kercher MA; He W; Cowan CW; Wensel TG; Sigler PB Nature; 2001 Feb; 409(6823):1071-7. PubMed ID: 11234020 [TBL] [Abstract][Full Text] [Related]
11. Specificity of G protein-RGS protein recognition is regulated by affinity adapters. Martemyanov KA; Hopp JA; Arshavsky VY Neuron; 2003 Jun; 38(6):857-62. PubMed ID: 12818172 [TBL] [Abstract][Full Text] [Related]
12. Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. Hu G; Zhang Z; Wensel TG J Biol Chem; 2003 Apr; 278(16):14550-4. PubMed ID: 12560335 [TBL] [Abstract][Full Text] [Related]
13. A regulator of G protein signaling interaction surface linked to effector specificity. Sowa ME; He W; Wensel TG; Lichtarge O Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1483-8. PubMed ID: 10677488 [TBL] [Abstract][Full Text] [Related]
14. Dependence of RGS9-1 membrane attachment on its C-terminal tail. He W; Melia TJ; Cowan CW; Wensel TG J Biol Chem; 2001 Dec; 276(52):48961-6. PubMed ID: 11677233 [TBL] [Abstract][Full Text] [Related]
15. GTPase regulators and photoresponses in cones of the eastern chipmunk. Zhang X; Wensel TG; Kraft TW J Neurosci; 2003 Feb; 23(4):1287-97. PubMed ID: 12598617 [TBL] [Abstract][Full Text] [Related]
16. N-terminal half of the cGMP phosphodiesterase gamma-subunit contributes to stabilization of the GTPase-accelerating protein complex. Guo LW; Ruoho AE J Biol Chem; 2011 Apr; 286(17):15260-7. PubMed ID: 21393250 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of the regulator of G protein signaling RGS9-1 by protein kinase A is a potential mechanism of light- and Ca2+-mediated regulation of G protein function in photoreceptors. Balasubramanian N; Levay K; Keren-Raifman T; Faurobert E; Slepak VZ Biochemistry; 2001 Oct; 40(42):12619-27. PubMed ID: 11601986 [TBL] [Abstract][Full Text] [Related]
18. The retinal specific protein RGS-r competes with the gamma subunit of cGMP phosphodiesterase for the alpha subunit of transducin and facilitates signal termination. Wieland T; Chen CK; Simon MI J Biol Chem; 1997 Apr; 272(14):8853-6. PubMed ID: 9083000 [TBL] [Abstract][Full Text] [Related]
19. Kinetic approaches to study the function of RGS9 isoforms. Martemyanov KA; Arshavsky VY Methods Enzymol; 2004; 390():196-209. PubMed ID: 15488179 [TBL] [Abstract][Full Text] [Related]
20. Activation of transducin guanosine triphosphatase by two proteins of the RGS family. Nekrasova ER; Berman DM; Rustandi RR; Hamm HE; Gilman AG; Arshavsky VY Biochemistry; 1997 Jun; 36(25):7638-43. PubMed ID: 9201904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]