BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 10979995)

  • 1. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for GABAB-mediated inhibition of transmission from the olfactory nerve to mitral cells in the rat olfactory bulb.
    Nickell WT; Behbehani MM; Shipley MT
    Brain Res Bull; 1994; 35(2):119-23. PubMed ID: 7953767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baclofen: effects on evoked field potentials and amino acid neurotransmitter release in the rat olfactory cortex slice.
    Collins GG; Anson J; Kelly EP
    Brain Res; 1982 Apr; 238(2):371-83. PubMed ID: 6124298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic metabotropic glutamate receptors in adult and developing neurons: autoexcitation in the olfactory bulb.
    van den Pol AN
    J Comp Neurol; 1995 Aug; 359(2):253-71. PubMed ID: 7499528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAB autoreceptors mediate activity-dependent disinhibition and enhance signal transmission in the dentate gyrus.
    Mott DD; Xie CW; Wilson WA; Swartzwelder HS; Lewis DV
    J Neurophysiol; 1993 Mar; 69(3):674-91. PubMed ID: 8096539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for glutamate as the olfactory receptor cell neurotransmitter.
    Berkowicz DA; Trombley PQ; Shepherd GM
    J Neurophysiol; 1994 Jun; 71(6):2557-61. PubMed ID: 7931535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium channel involvement in GABAB receptor-mediated inhibition of GABA release in area CA1 of the rat hippocampus.
    Doze VA; Cohen GA; Madison DV
    J Neurophysiol; 1995 Jul; 74(1):43-53. PubMed ID: 7472344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous field potentials in the glomeruli of the olfactory bulb: the leading role of juxtaglomerular cells.
    Karnup SV; Hayar A; Shipley MT; Kurnikova MG
    Neuroscience; 2006 Sep; 142(1):203-21. PubMed ID: 16876327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro.
    Lambert NA; Wilson WA
    J Neurophysiol; 1994 Jul; 72(1):121-30. PubMed ID: 7964997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of GABA
    Ramakrishna Y; Sadeghi SG
    J Neurophysiol; 2020 Sep; 124(3):962-972. PubMed ID: 32816581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA(B)-mediated inhibition of multiple modes of glutamate release in the nucleus of the solitary tract.
    Fawley JA; Peters JH; Andresen MC
    J Neurophysiol; 2011 Oct; 106(4):1833-40. PubMed ID: 21734101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple site optical recording of transmembrane voltage (MSORTV), single-unit recordings, and evoked field potentials from the olfactory bulb of skate (Raja erinacea).
    Cinelli AR; Salzberg BM
    J Neurophysiol; 1990 Dec; 64(6):1767-90. PubMed ID: 1981575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of antagonist potencies at pre- and post-synaptic GABA(B) receptors at inhibitory synapses in the CA1 region of the rat hippocampus.
    Pozza MF; Manuel NA; Steinmann M; Froestl W; Davies CH
    Br J Pharmacol; 1999 May; 127(1):211-9. PubMed ID: 10369475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. II. Differential effects of GABAA and GABAB receptor antagonists on responses of VPM neurons.
    Lee SM; Friedberg MH; Ebner FF
    J Neurophysiol; 1994 May; 71(5):1716-26. PubMed ID: 8064344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons.
    Roepstorff A; Lambert JD
    J Neurophysiol; 1994 Dec; 72(6):2911-26. PubMed ID: 7897499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA and glutamate release affected by GABAB receptor antagonists with similar potency: no evidence for pharmacologically different presynaptic receptors.
    Waldmeier PC; Wicki P; Feldtrauer JJ; Mickel SJ; Bittiger H; Baumann PA
    Br J Pharmacol; 1994 Dec; 113(4):1515-21. PubMed ID: 7889310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus.
    Davies CH; Collingridge GL
    J Physiol; 1993 Dec; 472():245-65. PubMed ID: 8145143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAB receptors modulate synaptically-evoked responses in the rat dentate gyrus, in vivo.
    Brucato FH; Mott DD; Lewis DV; Swartzwelder HS
    Brain Res; 1995 Apr; 677(2):326-32. PubMed ID: 7552259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine-induced presynaptic inhibition of IPSCs and EPSCs in rat hypothalamic supraoptic nucleus neurones.
    Oliet SH; Poulain DA
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):815-25. PubMed ID: 10545146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.