These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 10979999)

  • 41. Interdependence of spatial and temporal coding in the auditory midbrain.
    Koch U; Grothe B
    J Neurophysiol; 2000 Apr; 83(4):2300-14. PubMed ID: 10758135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast and reliable decisions for a dynamic song parameter in field crickets.
    Trobe D; Schuster R; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan; 197(1):131-5. PubMed ID: 20878165
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of contralateral sound stimulation on unit activity of ventral cochlear nucleus neurons.
    Shore SE; Sumner CJ; Bledsoe SC; Lu J
    Exp Brain Res; 2003 Dec; 153(4):427-35. PubMed ID: 12961054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regeneration of normal afferent input does not eliminate aberrant synaptic connections of an identified auditory interneuron in the cricket, Teleogryllus oceanicus.
    Pallas SL; Hoy RR
    J Comp Neurol; 1986 Jun; 248(3):348-59. PubMed ID: 3722462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies.
    Mason AC; Forrest TG; Hoy RR
    J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets.
    Nebeling B
    J Exp Zool; 2000 Feb; 286(3):219-30. PubMed ID: 10653961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective attention in an insect auditory neuron.
    Pollack GS
    J Neurosci; 1988 Jul; 8(7):2635-9. PubMed ID: 3249249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
    Stritih N; Stumpner A
    Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distribution of synapses on two ascending interneurones carrying frequency-specific information in the auditory system of the cricket: evidence for GABAergic inputs.
    Hardt M; Watson AH
    J Comp Neurol; 1994 Jul; 345(4):481-95. PubMed ID: 7962696
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The cellular basis of a corollary discharge.
    Poulet JF; Hedwig B
    Science; 2006 Jan; 311(5760):518-22. PubMed ID: 16439660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptation and selective information transmission in the cricket auditory neuron AN2.
    Wimmer K; Hildebrandt KJ; Hennig RM; Obermayer K
    PLoS Comput Biol; 2008 Sep; 4(9):e1000182. PubMed ID: 18818723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural coding of sound frequency by cricket auditory receptors.
    Imaizumi K; Pollack GS
    J Neurosci; 1999 Feb; 19(4):1508-16. PubMed ID: 9952426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiple arithmetic operations in a single neuron: the recruitment of adaptation processes in the cricket auditory pathway depends on sensory context.
    Hildebrandt KJ; Benda J; Hennig RM
    J Neurosci; 2011 Oct; 31(40):14142-50. PubMed ID: 21976499
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multisegmental analyses of acoustic startle in the flying cricket (Teleogryllus oceanicus): kinematics and electromyography.
    Miles CI; May ML; Holbrook EH; Hoy RR
    J Exp Biol; 1992 Aug; 169():19-36. PubMed ID: 1402606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.