These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10979999)

  • 61. Auditory response properties in the superior paraolivary nucleus of the gerbil.
    Behrend O; Brand A; Kapfer C; Grothe B
    J Neurophysiol; 2002 Jun; 87(6):2915-28. PubMed ID: 12037195
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket.
    Stumpner A
    J Neurophysiol; 1998 May; 79(5):2408-15. PubMed ID: 9582216
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Coding of a sexually dimorphic song feature by auditory interneurons of grasshoppers: the role of leading inhibition.
    Krahe R; Budinger E; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jan; 187(12):977-85. PubMed ID: 11913816
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae).
    MacLeod KM; Soares D; Carr CE
    J Comp Neurol; 2006 Mar; 495(2):185-201. PubMed ID: 16435285
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Leading inhibition to neural oscillation is important for time-domain processing in the auditory midbrain.
    Galazyuk AV; Lin W; Llano D; Feng AS
    J Neurophysiol; 2005 Jul; 94(1):314-26. PubMed ID: 15772243
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket.
    Hoy RR; Nolen TG; Casaday GC
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7772-6. PubMed ID: 3865195
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Early appearance of inhibitory input to the MNTB supports binaural processing during development.
    Green JS; Sanes DH
    J Neurophysiol; 2005 Dec; 94(6):3826-35. PubMed ID: 16120660
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Azimuthal receptive fields are shaped by GABAergic inhibition in the inferior colliculus of the mustache bat.
    Park TJ; Pollak GD
    J Neurophysiol; 1994 Sep; 72(3):1080-102. PubMed ID: 7807197
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Calcium-dependent control of temporal processing in an auditory interneuron: a computational analysis.
    Ponnath A; Farris HE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Sep; 196(9):613-28. PubMed ID: 20559640
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A simple latency-dependent spiking-neuron model of cricket phonotaxis.
    Webb B; Scutt T
    Biol Cybern; 2000 Mar; 82(3):247-69. PubMed ID: 10664111
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sensitivity to interaural intensity differences of neurons in primary auditory cortex of the cat. I. types of sensitivity and effects of variations in sound pressure level.
    Irvine DR; Rajan R; Aitkin LM
    J Neurophysiol; 1996 Jan; 75(1):75-96. PubMed ID: 8822543
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Contralateral effects and binaural interactions in dorsal cochlear nucleus.
    Davis KA
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):280-96. PubMed ID: 16075189
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae).
    Römer H; Krusch M
    J Comp Physiol A; 2000 Feb; 186(2):181-91. PubMed ID: 10707316
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Diversity of intersegmental auditory neurons in a bush cricket.
    Stumpner A; Molina J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Dec; 192(12):1359-76. PubMed ID: 16964494
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interaural phase difference modulates the neural activity in the nucleus angularis and improves the processing of level difference cue in the lateral lemniscal nucleus in the chicken.
    Sato T; Fukui I; Ohmori H
    Neurosci Res; 2010 Feb; 66(2):198-212. PubMed ID: 19914308
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Contralateral inhibitory and excitatory frequency response maps in the mammalian cochlear nucleus.
    Ingham NJ; Bleeck S; Winter IM
    Eur J Neurosci; 2006 Nov; 24(9):2515-29. PubMed ID: 17100840
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss.
    Schrader S
    Pflugers Arch; 2000; 439(3 Suppl):R187-9. PubMed ID: 10653187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.