These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 10980033)
1. Augmentation of L-type calcium current by hypoxia in rabbit carotid body glomus cells: evidence for a PKC-sensitive pathway. Summers BA; Overholt JL; Prabhakar NR J Neurophysiol; 2000 Sep; 84(3):1636-44. PubMed ID: 10980033 [TBL] [Abstract][Full Text] [Related]
2. Augmentation of calcium current by hypoxia in carotid body glomus cells. Summers BA; Overholt JL; Prabhakar NR Adv Exp Med Biol; 2000; 475():589-99. PubMed ID: 10849699 [TBL] [Abstract][Full Text] [Related]
3. CO(2) and pH independently modulate L-type Ca(2+) current in rabbit carotid body glomus cells. Summers BA; Overholt JL; Prabhakar NR J Neurophysiol; 2002 Aug; 88(2):604-12. PubMed ID: 12163513 [TBL] [Abstract][Full Text] [Related]
4. Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels. Overholt JL; Prabhakar NR J Neurophysiol; 1997 Nov; 78(5):2467-74. PubMed ID: 9356397 [TBL] [Abstract][Full Text] [Related]
5. Nitric oxide inhibits L-type Ca2+ current in glomus cells of the rabbit carotid body via a cGMP-independent mechanism. Summers BA; Overholt JL; Prabhakar NR J Neurophysiol; 1999 Apr; 81(4):1449-57. PubMed ID: 10200181 [TBL] [Abstract][Full Text] [Related]
6. Role of voltage-dependent calcium channels in stimulus-secretion coupling in rabbit carotid body chemoreceptor cells. Rocher A; Geijo-Barrientos E; Cáceres AI; Rigual R; González C; Almaraz L J Physiol; 2005 Jan; 562(Pt 2):407-20. PubMed ID: 15528240 [TBL] [Abstract][Full Text] [Related]
7. Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels. Kim DK; Oh EK; Summers BA; Prabhakar NR; Kumar GK Brain Res; 2001 Feb; 892(2):359-69. PubMed ID: 11172784 [TBL] [Abstract][Full Text] [Related]
8. Norepinephrine inhibits a toxin resistant Ca2+ current in carotid body glomus cells: evidence for a direct G protein mechanism. Overholt JL; Prabhakar NR J Neurophysiol; 1999 Jan; 81(1):225-33. PubMed ID: 9914283 [TBL] [Abstract][Full Text] [Related]
9. Orexin-B augments voltage-gated L-type Ca(2+) current via protein kinase C-mediated signalling pathway in ovine somatotropes. Xu R; Roh SG; Gong C; Hernandez M; Ueta Y; Chen C Neuroendocrinology; 2003 Mar; 77(3):141-52. PubMed ID: 12673048 [TBL] [Abstract][Full Text] [Related]
10. Calcineurin activation by slow calcium release from intracellular stores suppresses protein kinase C regulation of L-type calcium channels in L6 cells. Turner JD; Thomas AP; Reeves JP; Hantash BM Cell Calcium; 2009 Oct; 46(4):242-7. PubMed ID: 19758695 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of voltage-gated L-type calcium channels by labedipinedilol-A involves protein kinase C in rat cerebrovascular smooth muscle cells. Wu BN; Chen ML; Dai ZK; Lin YL; Yeh JL; Wu JR; Chen IJ Vascul Pharmacol; 2009; 51(2-3):65-71. PubMed ID: 19298869 [TBL] [Abstract][Full Text] [Related]
12. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia. Makarenko VV; Ahmmed GU; Peng YJ; Khan SA; Nanduri J; Kumar GK; Fox AP; Prabhakar NR J Neurophysiol; 2016 Jan; 115(1):345-54. PubMed ID: 26561606 [TBL] [Abstract][Full Text] [Related]
13. Chemosensing at the carotid body. Involvement of a HERG-like potassium current in glomus cells. Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR Adv Exp Med Biol; 2000; 475():241-8. PubMed ID: 10849664 [TBL] [Abstract][Full Text] [Related]
14. HERG-Like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. Overholt JL; Ficker E; Yang T; Shams H; Bright GR; Prabhakar NR J Neurophysiol; 2000 Mar; 83(3):1150-7. PubMed ID: 10712445 [TBL] [Abstract][Full Text] [Related]
15. Increased calcium current in carotid body glomus cells following in vivo acclimatization to chronic hypoxia. Hempleman SC J Neurophysiol; 1996 Sep; 76(3):1880-6. PubMed ID: 8890300 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Ca2+-dependent K+ channels in rat carotid body type I cells by protein kinase C. Peers C; Carpenter E J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):743-50. PubMed ID: 9769418 [TBL] [Abstract][Full Text] [Related]
17. Modulation of N-type calcium channel activity by G-proteins and protein kinase C. Barrett CF; Rittenhouse AR J Gen Physiol; 2000 Mar; 115(3):277-86. PubMed ID: 10694257 [TBL] [Abstract][Full Text] [Related]
18. Protein kinase C-dependent and -independent inhibition of Ca(2+) influx by phorbol ester in rat pancreatic beta-cells. Nakamura J; Suda T; Ogawa Y; Takeo T; Suga S; Wakui M Cell Signal; 2001 Mar; 13(3):199-205. PubMed ID: 11282458 [TBL] [Abstract][Full Text] [Related]
19. Phorbol ester-induced inhibition of potassium currents in rat sensory neurons requires voltage-dependent entry of calcium. Zhang YH; Kenyon JL; Nicol GD J Neurophysiol; 2001 Jan; 85(1):362-73. PubMed ID: 11152736 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of HCO(3)(-) permeability across the apical membrane of bovine corneal endothelium by multiple signaling pathways. Zhang Y; Xie Q; Sun XC; Bonanno JA Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1146-53. PubMed ID: 11923259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]