BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 10980102)

  • 1. Evaluation of a fiberoptic blood gas monitor in neonates with congenital heart disease.
    Raake JL; Taeed R; Manning P; Pearl J; Schwartz SM; Nelson DP
    Respir Care; 2000 Sep; 45(9):1105-12. PubMed ID: 10980102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of the on-line Sensicath blood gas monitoring system.
    Myklejord DJ; Pritzker MR; Nicoloff DM; Emery AM; Emery RW
    Heart Surg Forum; 1998; 1(1):60-4. PubMed ID: 11276442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical validation of a continuous intravascular neonatal blood gas sensor introduced through an umbilical artery catheter.
    Meyers PA; Worwa C; Trusty R; Mammel MC
    Respir Care; 2002 Jun; 47(6):682-7. PubMed ID: 12036438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiences with continuous intra-arterial blood gas monitoring.
    Menzel M; Henze D; Soukup J; Engelbrecht K; Senderreck M; Clausen T; Radke J
    Minerva Anestesiol; 2001 Apr; 67(4):325-31. PubMed ID: 11376534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients.
    Rais-Bahrami K; Rivera O; Mikesell GT; Short BL
    J Perinatol; 2002 Sep; 22(6):472-4. PubMed ID: 12168125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous arterial and venous blood gas monitoring during cardiopulmonary bypass.
    Mark JB; FitzGerald D; Fenton T; Fosberg AM; Camann W; Maffeo N; Winkelman J
    J Thorac Cardiovasc Surg; 1991 Sep; 102(3):431-9. PubMed ID: 1908928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a new combined transcutaneous measurement of PCO2/pulse oximetry oxygen saturation ear sensor in newborn patients.
    Bernet-Buettiker V; Ugarte MJ; Frey B; Hug MI; Baenziger O; Weiss M
    Pediatrics; 2005 Jan; 115(1):e64-8. PubMed ID: 15601814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point of care testing: improving pediatric outcomes.
    Rossi AF; Khan D
    Clin Biochem; 2004 Jun; 37(6):456-61. PubMed ID: 15183294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a method for converting venous values of acid-base and oxygenation status to arterial values.
    Toftegaard M; Rees SE; Andreassen S
    Emerg Med J; 2009 Apr; 26(4):268-72. PubMed ID: 19307387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analytical reliability of the results of determining pH, pCO2 and pO2 with the ABL 300 (Radiometer) automatic pH and blood gas analyzer].
    Tsachev K; Dochev D; Tikholov I
    Vutr Boles; 1988; 27(4):77-81. PubMed ID: 3145645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous blood gas monitoring using an in-dwelling optode method: clinical evaluation of the Neotrend sensor using a luer stub adaptor to access the umbilical artery catheter.
    Rais-Bahrami K; Rivera O; Mikesell GT; Short BL
    J Perinatol; 2002; 22(5):367-9. PubMed ID: 12082470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Venoarterial PCO2 difference: a marker of postoperative cardiac output in children with congenital heart disease.
    Furqan M; Hashmat F; Amanullah M; Khan M; Durani HK; Anwar-ul-Haque
    J Coll Physicians Surg Pak; 2009 Oct; 19(10):640-3. PubMed ID: 19811716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Prostaglandin E1: effect on blood gases in infants with cyanotic congenital heart disease (author's transl)].
    Schöber JG; Kellner M; Christian I
    Klin Padiatr; 1977 Sep; 189(5):365-9. PubMed ID: 21323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arterial-to-end-tidal carbon dioxide tension difference in children with congenital heart disease.
    Choudhury M; Kiran U; Choudhary SK; Airan B
    J Cardiothorac Vasc Anesth; 2006 Apr; 20(2):196-201. PubMed ID: 16616659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypertonic-hyperoncotic solutions improve cardiac function in children after open-heart surgery.
    Schroth M; Plank C; Meissner U; Eberle KP; Weyand M; Cesnjevar R; Dötsch J; Rascher W
    Pediatrics; 2006 Jul; 118(1):e76-84. PubMed ID: 16751617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH.
    Takala J; Parviainen I; Siloaho M; Ruokonen E; Hämäläinen E
    Crit Care Med; 1994 Nov; 22(11):1877-9. PubMed ID: 7956295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisite evaluation of a continuous intraarterial blood gas monitoring system.
    Larson CP; Vender J; Seiver A
    Anesthesiology; 1994 Sep; 81(3):543-52. PubMed ID: 8092498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Blood gas measurements and automatization (author's transl)].
    Clerbaux T; Vanhove P; Nullens W; Brasseur L
    Bull Eur Physiopathol Respir; 1977; 13(2):285-97. PubMed ID: 16678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of arterial and venous blood gases analysis in patients with exacerbation of chronic obstructive pulmonary disease.
    Razi E; Moosavi GA
    Saudi Med J; 2007 Jun; 28(6):862-5. PubMed ID: 17530100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous pH and Pco2 monitoring during respiratory failure in children with the Paratrend 7 inserted into the peripheral venous system.
    Tobias JD; Connors D; Strauser L; Johnson T
    J Pediatr; 2000 May; 136(5):623-7. PubMed ID: 10802494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.