These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10980491)

  • 1. Responses to chemical cues from animal and plant foods by actively foraging insectivorous and omnivorous scincine lizards.
    Cooper WE; Al-Johany AM; Vitt LJ; Habegger JJ
    J Exp Zool; 2000 Oct; 287(5):327-39. PubMed ID: 10980491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food chemical cues elicit general and population-specific effects on lingual and biting behaviors in the lacertid lizard Podarcis lilfordi.
    Cooper WE; Pérez-Mellado V
    J Exp Zool; 2001 Aug; 290(3):207-17. PubMed ID: 11479900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food chemical discriminations by an herbivorous lizard, Corucia zebrata.
    Cooper WE
    J Exp Zool; 2000 Mar; 286(4):372-8. PubMed ID: 10684560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical discrimination by tongue-flicking in lizards: A review with hypotheses on its origin and its ecological and phylogenetic relationships.
    Cooper WE
    J Chem Ecol; 1994 Feb; 20(2):439-87. PubMed ID: 24242066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of hatchling Komodo Dragons (Varanus komodoensis) at Denver Zoo to visual and chemical cues arising from prey.
    Chiszar D; Krauss S; Shipley B; Trout T; Smith HM
    Zoo Biol; 2009; 28(1):29-34. PubMed ID: 19358316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulus control of predatory behavior by the Iberian wall lizard (Podarcis hispanica, Sauria, Lacertidae): effects of familiarity with prey.
    Desfilis E; Font E; Guillén-Salazar F
    J Comp Psychol; 2003 Sep; 117(3):309-16. PubMed ID: 14498807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemosensory responses to sugar and fat by the omnivorous lizard Gallotia caesaris: with behavioral evidence suggesting a role for gustation.
    Cooper WE; Pérez-Mellado V
    Physiol Behav; 2001 Jul; 73(4):509-16. PubMed ID: 11495654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating diet and digestive tract specialization: examples from the lizard family Liolaemidae.
    O'Grady SP; Morando M; Avila L; Dearing MD
    Zoology (Jena); 2005; 108(3):201-10. PubMed ID: 16351968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The correlated evolution of biomechanics, gait and foraging mode in lizards.
    McElroy EJ; Hickey KL; Reilly SM
    J Exp Biol; 2008 Apr; 211(Pt 7):1029-40. PubMed ID: 18344476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to major categories of food chemicals by the lizard Podarcis lilfordi.
    Cooper WE; Pérez-Mellado V; Vitt LJ
    J Chem Ecol; 2002 Apr; 28(4):709-20. PubMed ID: 12035921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omnivory in lacertid lizards: adaptive evolution or constraint?
    Herrel A; Vanhooydonck B; Van Damme R
    J Evol Biol; 2004 Sep; 17(5):974-84. PubMed ID: 15312070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pheromonal discriminations of sex, reproductive condition, and species by the lacertid lizard Podarcis hispanica.
    Cooper WE; Pèrez-Mellado V
    J Exp Zool; 2002 May; 292(6):523-7. PubMed ID: 12115935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral responses to plant toxins by two omnivorous lizard species.
    Cooper WE; Pérez-Mellado V; Vitt LJ; Budzinsky B
    Physiol Behav; 2002 Jun; 76(2):297-303. PubMed ID: 12044603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lingual and biting responses to selected lipids by the lizard Podarcis lilfordi.
    Cooper WE; Pérez-Mellado V; Vitt LJ
    Physiol Behav; 2002 Feb 1-15; 75(1-2):237-41. PubMed ID: 11890973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How phylogeny and foraging ecology drive the level of chemosensory exploration in lizards and snakes.
    Baeckens S; Van Damme R; Cooper WE
    J Evol Biol; 2017 Mar; 30(3):627-640. PubMed ID: 28009479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses to prey chemicals by a lacertid lizard,Podarcis muralis: Prey chemical discrimination and poststrike elevation in tongue-flick rate.
    Cooper WE
    J Chem Ecol; 1991 May; 17(5):849-63. PubMed ID: 24259071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foraging mode and evolution of strike-induced chemosensory searching in lizards.
    Cooper WE
    J Chem Ecol; 2003 Apr; 29(4):1013-26. PubMed ID: 12775158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical access to the vomeronasal organs of the lizard Chalcides ocellatus.
    Graves BM; Halpern M
    J Exp Zool; 1989 Feb; 249(2):150-7. PubMed ID: 2723603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretion by the nasal salt glands of two insectivorous lizard species is initiated by an ecologically relevant dietary ion, chloride.
    Hazard LC; Lechuga C; Zilinskis S
    J Exp Zool A Ecol Genet Physiol; 2010 Aug; 313(7):442-51. PubMed ID: 20623801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.