BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 10980595)

  • 1. Activation of RSK by UV-light: phosphorylation dynamics and involvement of the MAPK pathway.
    Mérienne K; Jacquot S; Zeniou M; Pannetier S; Sassone-Corsi P; Hanauer A
    Oncogene; 2000 Aug; 19(37):4221-9. PubMed ID: 10980595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of extracellular signal-regulated kinase and c-Jun-NH(2)-terminal kinase but not p38 mitogen-activated protein kinases is required for RRR-alpha-tocopheryl succinate-induced apoptosis of human breast cancer cells.
    Yu W; Liao QY; Hantash FM; Sanders BG; Kline K
    Cancer Res; 2001 Sep; 61(17):6569-76. PubMed ID: 11522656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity.
    Roux PP; Richards SA; Blenis J
    Mol Cell Biol; 2003 Jul; 23(14):4796-804. PubMed ID: 12832467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect of panduratin A on UV-induced activation of mitogen-activated protein kinases (MAPKs) in dermal fibroblast cells.
    Shim JS; Kwon YY; Han YS; Hwang JK
    Planta Med; 2008 Oct; 74(12):1446-50. PubMed ID: 18683126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways.
    Liu W; Liang Q; Balzar S; Wenzel S; Gorska M; Alam R
    J Allergy Clin Immunol; 2008 Apr; 121(4):893-902.e2. PubMed ID: 18395552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway.
    Shefer G; Oron U; Irintchev A; Wernig A; Halevy O
    J Cell Physiol; 2001 Apr; 187(1):73-80. PubMed ID: 11241351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered ERK/MAPK signaling in the hippocampus of the mrsk2_KO mouse model of Coffin-Lowry syndrome.
    Schneider A; Mehmood T; Pannetier S; Hanauer A
    J Neurochem; 2011 Nov; 119(3):447-59. PubMed ID: 21838783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leptin signaling in human peripheral blood mononuclear cells, activation of p38 and p42/44 mitogen-activated protein (MAP) kinase and p70 S6 kinase.
    van den Brink GR; O'Toole T; Hardwick JC; van den Boogaardt DE; Versteeg HH; van Deventer SJ; Peppelenbosch MP
    Mol Cell Biol Res Commun; 2000 Sep; 4(3):144-50. PubMed ID: 11281728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Rho and p38 MAPK in endothelin-1-induced expression of PGHS-2 mRNA in osteoblast-like cells.
    Windischhofer W; Zach D; Fauler G; Raspotnig G; Köfeler H; Leis HJ
    J Bone Miner Res; 2002 Oct; 17(10):1774-84. PubMed ID: 12369781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites.
    Wang Y; Prywes R
    Oncogene; 2000 Mar; 19(11):1379-85. PubMed ID: 10723128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vaccinia virus-stimulated mitogen-activated protein kinase (MAPK) pathway is required for virus multiplication.
    Andrade AA; Silva PN; Pereira AC; De Sousa LP; Ferreira PC; Gazzinelli RT; Kroon EG; Ropert C; Bonjardim CA
    Biochem J; 2004 Jul; 381(Pt 2):437-46. PubMed ID: 15025565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo.
    Smith JA; Poteet-Smith CE; Malarkey K; Sturgill TW
    J Biol Chem; 1999 Jan; 274(5):2893-8. PubMed ID: 9915826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB.
    Deak M; Clifton AD; Lucocq LM; Alessi DR
    EMBO J; 1998 Aug; 17(15):4426-41. PubMed ID: 9687510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control sites of ribosomal S6 kinase B and persistent activation through tumor necrosis factor.
    Tomás-Zuber M; Mary JL; Lesslauer W
    J Biol Chem; 2000 Aug; 275(31):23549-58. PubMed ID: 10806207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ser-10 phosphorylation of histone H3 and immediate early gene expression in oncogene-transformed mouse fibroblasts.
    Strelkov IS; Davie JR
    Cancer Res; 2002 Jan; 62(1):75-8. PubMed ID: 11782362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases.
    Zhao Y; Bjorbaek C; Moller DE
    J Biol Chem; 1996 Nov; 271(47):29773-9. PubMed ID: 8939914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and function of the RSK family of protein kinases.
    Romeo Y; Zhang X; Roux PP
    Biochem J; 2012 Jan; 441(2):553-69. PubMed ID: 22187936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of basal calcium in the EGF activation of MAP kinases.
    Ji QS; Carpenter G
    Oncogene; 2000 Mar; 19(14):1853-6. PubMed ID: 10777220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of casein kinase II by growth factors: a reevaluation.
    Litchfield DW; Dobrowolska G; Krebs EG
    Cell Mol Biol Res; 1994; 40(5-6):373-81. PubMed ID: 7735311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperosmotic stress strongly potentiates serum response factor (SRF)-dependent transcriptional activity in Ehrlich Lettré Ascites cells through a mechanism involving p38 mitogen-activated protein kinase.
    Gorbatenko A; Wiwel M; Klingberg H; Nielsen AB; Kapus A; Pedersen SF
    J Cell Physiol; 2011 Nov; 226(11):2857-68. PubMed ID: 21302281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.