These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 10981063)

  • 21. Pressure natriuresis following acute and chronic inhibition of nitric oxide synthase in rats.
    Guarasci GR; Kline RL
    Am J Physiol; 1996 Feb; 270(2 Pt 2):R469-78. PubMed ID: 8779881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension.
    Wilcox CS; Welch WJ
    Kidney Int Suppl; 1996 Jun; 55():S9-13. PubMed ID: 8743503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide in the kidney: synthesis, localization, and function.
    Bachmann S; Mundel P
    Am J Kidney Dis; 1994 Jul; 24(1):112-29. PubMed ID: 7517625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation to increased dietary salt intake in the rat. Role of endogenous nitric oxide.
    Shultz PJ; Tolins JP
    J Clin Invest; 1993 Feb; 91(2):642-50. PubMed ID: 7679414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of abnormal nitric oxide systems in salt-sensitive hypertension.
    Manning RD; Hu L; Tan DY; Meng S
    Am J Hypertens; 2001 Jun; 14(6 Pt 2):68S-73S. PubMed ID: 11411768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Renal effects of the chronic inhibition of nitric oxide synthesis in cirrhotic rats with ascites].
    Ortiz MC; Fortepiani LA; Martínez-Salgado C; Eleno N; Atucha NM; López-Novoa JM; García-Estañ J
    Nefrologia; 2001; 21(6):556-64. PubMed ID: 11881425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat.
    Johnson RJ; Gordon KL; Giachelli C; Kurth T; Skelton MM; Cowley AW
    J Hypertens; 2000 Oct; 18(10):1497-505. PubMed ID: 11057439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal cyclic 3',5'-guanosine monophosphate and sodium excretion in Dahl salt-resistant and Dahl salt-sensitive rats: comparison of the roles of bradykinin and nitric oxide.
    Millatt LJ; Siragy HM
    J Hypertens; 2000 Oct; 18(10):1491-6. PubMed ID: 11057438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that reduced renal medullary nitric oxide synthase activity of dahl s rats enables small elevations of arginine vasopressin to produce sustained hypertension.
    Yuan B; Cowley AW
    Hypertension; 2001 Feb; 37(2 Pt 2):524-8. PubMed ID: 11230329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Platelet-activating factor and solute transport processes in the kidney.
    Handa RK; Strandhoy JW; Giammattei CE; Handa SE
    Am J Physiol Renal Physiol; 2003 Feb; 284(2):F274-81. PubMed ID: 12529272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potassium supplementation increases sodium excretion and nitric oxide production in hypertensive Dahl rats.
    Zhou MS; Nishida Y; Yoneyama H; Chen QH; Kosaka H
    Clin Exp Hypertens; 1999 Nov; 21(8):1397-411. PubMed ID: 10574420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of salt loading on nitric oxide synthase expression in normotensive rats.
    Ni Z; Vaziri ND
    Am J Hypertens; 2001 Feb; 14(2):155-63. PubMed ID: 11243307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension.
    Tian N; Thrasher KD; Gundy PD; Hughson MD; Manning RD
    Hypertension; 2005 May; 45(5):934-9. PubMed ID: 15837840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overexpression of MicroRNA-429 Transgene Into the Renal Medulla Attenuated Salt-Sensitive Hypertension in Dahl S Rats.
    Zhu Q; Hu J; Wang L; Wang W; Wang Z; Li PL; Li N
    Am J Hypertens; 2021 Oct; 34(10):1071-1077. PubMed ID: 34089591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of nitric oxide in the control of the renal medullary circulation.
    Mattson DL; Lu S; Cowley AW
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):587-90. PubMed ID: 9269532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of a role of neuronal nitric oxide synthase in the regulation of the renal function in rats fed a low-sodium diet.
    Vanecková I; Kramer HJ; Malý J; Bäcker A; Bokemeyer D; Cervenka L
    Kidney Blood Press Res; 2002; 25(4):224-31. PubMed ID: 12424424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the endothelium-dependent relaxing factor nitric oxide on renal function.
    Romero JC; Lahera V; Salom MG; Biondi ML
    J Am Soc Nephrol; 1992 Mar; 2(9):1371-87. PubMed ID: 1627761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis and homeostatic roles of nitric oxide in the normal kidney.
    Kone BC; Baylis C
    Am J Physiol; 1997 May; 272(5 Pt 2):F561-78. PubMed ID: 9176366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lack of blood pressure salt-sensitivity supports a preglomerular site of action of nitric oxide in Type I diabetic rats.
    Brands MW; Bell TD; Fleming C; Labazi H; Sturgis LC
    Clin Exp Pharmacol Physiol; 2007; 34(5-6):475-9. PubMed ID: 17439418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of nitric oxide in regulation of the renal medulla in normal and hypertensive kidneys.
    Pallone TL; Mattson DL
    Curr Opin Nephrol Hypertens; 2002 Jan; 11(1):93-8. PubMed ID: 11753093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.