These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 10981063)

  • 41. Hypoxia inducible factor-1α-mediated gene activation in the regulation of renal medullary function and salt sensitivity of blood pressure.
    Li N
    Am J Cardiovasc Dis; 2012; 2(3):208-15. PubMed ID: 22937490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Renal interstitial guanosine cyclic 3', 5'-monophosphate mediates pressure-natriuresis via protein kinase G.
    Jin XH; McGrath HE; Gildea JJ; Siragy HM; Felder RA; Carey RM
    Hypertension; 2004 May; 43(5):1133-9. PubMed ID: 15007031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension.
    Matsuoka H; Itoh S; Kimoto M; Kohno K; Tamai O; Wada Y; Yasukawa H; Iwami G; Okuda S; Imaizumi T
    Hypertension; 1997 Jan; 29(1 Pt 2):242-7. PubMed ID: 9039109
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure.
    Tornel J; Madrid MI; García-Salom M; Wirth KJ; Fenoy FJ
    Circ Res; 2000 Mar; 86(5):589-95. PubMed ID: 10720421
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats.
    Aoki H; Nakata M; Dezaki K; Lu M; Gantulga D; Yamamoto K; Shimada K; Kario K; Yada T
    Endocr J; 2013; 60(5):571-81. PubMed ID: 23328675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced superoxide activity modulates renal function in NO-deficient hypertensive rats.
    Kopkan L; Majid DS
    Hypertension; 2006 Mar; 47(3):568-72. PubMed ID: 16401762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of renal perfusion pressure on renal interstitial hydrostatic pressure and Na+ excretion: role of endothelium-derived nitric oxide.
    Nakamura T; Alberola AM; Salazar FJ; Saito Y; Kurashina T; Granger JP; Nagai R
    Nephron; 1998; 78(1):104-11. PubMed ID: 9453411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla.
    Mori T; Cowley AW; Ito S
    J Pharmacol Sci; 2006 Jan; 100(1):2-8. PubMed ID: 16404134
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nitric oxide in the regulation of renal blood flow.
    Ito S; Carretero OA; Abe K
    New Horiz; 1995 Nov; 3(4):615-23. PubMed ID: 8574592
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elevated BSC-1 and ROMK expression in Dahl salt-sensitive rat kidneys.
    Hoagland KM; Flasch AK; Dahly-Vernon AJ; dos Santos EA; Knepper MA; Roman RJ
    Hypertension; 2004 Apr; 43(4):860-5. PubMed ID: 14967839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The renal medulla and hypertension.
    Cowley AW; Mattson DL; Lu S; Roman RJ
    Hypertension; 1995 Apr; 25(4 Pt 2):663-73. PubMed ID: 7721413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of chronic increased salt intake on nitric oxide synthesis inhibition-induced hypertension.
    Fernández-Rivas A; García-Estañ J; Vargas F
    J Hypertens; 1995 Jan; 13(1):123-8. PubMed ID: 7759842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal nitric oxide strongly suppresses sympathetic outflow in high-salt Dahl rats.
    Nishida Y; Chen QH; Tandai-Hiruma M; Terada S; Horiuchi J
    J Hypertens; 2001 Mar; 19(3 Pt 2):627-34. PubMed ID: 11327639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of pressure-diuresis and pressure-natriuresis in Dahl salt-resistant and Dahl salt-sensitive rats.
    Beard DA; Mescam M
    BMC Physiol; 2012 May; 12():6. PubMed ID: 22583378
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of nitric oxide in renal papillary blood flow and sodium excretion.
    Mattson DL; Roman RJ; Cowley AW
    Hypertension; 1992 Jun; 19(6 Pt 2):766-9. PubMed ID: 1592478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats.
    Walkowska A; Kompanowska-Jezierska E; Sadowski J
    Kidney Int; 2004 Aug; 66(2):705-12. PubMed ID: 15253725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of salt intake and inhibitor dose on arterial hypertension and renal injury induced by chronic nitric oxide blockade.
    Yamada SS; Sassaki AL; Fujihara CK; Malheiros DM; De Nucci G; Zatz R
    Hypertension; 1996 May; 27(5):1165-72. PubMed ID: 8621212
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats.
    Yu M; Moreno C; Hoagland KM; Dahly A; Ditter K; Mistry M; Roman RJ
    J Hypertens; 2003 Jun; 21(6):1125-35. PubMed ID: 12777949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nitric oxide, the kidney and hypertension.
    Schnackenberg C; Patel AR; Kirchner KA; Granger JP
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):600-6. PubMed ID: 9269535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.