These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 10981063)

  • 81. Tubuloglomerular feedback.
    Ito S; Abe K
    Jpn Heart J; 1996 Mar; 37(2):153-63. PubMed ID: 8676542
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450.
    Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J
    Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion.
    Brown R; Ollerstam A; Persson AE
    Kidney Int; 2004 Apr; 65(4):1349-56. PubMed ID: 15086474
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat.
    Chin SY; Wang CT; Majid DS; Navar LG
    Am J Physiol; 1998 May; 274(5):F876-82. PubMed ID: 9612324
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Influence of nitric oxide derived from neuronal nitric oxide synthase on glomerular filtration.
    Sigmon DH; Beierwaltes WH
    Gen Pharmacol; 2000 Feb; 34(2):95-100. PubMed ID: 10974416
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Effect of nebivolol, a novel beta 1-selective adrenoceptor antagonist with vasodilating properties, on kidney function.
    Greven J; Gabriëls G
    Arzneimittelforschung; 2000 Nov; 50(11):973-9. PubMed ID: 11148863
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide.
    O'Connor PM; Cowley AW
    Curr Hypertens Rep; 2010 Apr; 12(2):86-92. PubMed ID: 20424940
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Nitric oxide in essential and renal hypertension.
    MacAllister R; Vallance P
    J Am Soc Nephrol; 1994 Oct; 5(4):1057-65. PubMed ID: 7531511
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Kidney-specific lymphangiogenesis increases sodium excretion and lowers blood pressure in mice.
    Balasubbramanian D; Baranwal G; Clark MC; Goodlett BL; Mitchell BM; Rutkowski JM
    J Hypertens; 2020 May; 38(5):874-885. PubMed ID: 31913221
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Novel Mechanism of Renal Microcirculation Regulation: Connecting Tubule-Glomerular Feedback.
    Romero CA; Carretero OA
    Curr Hypertens Rep; 2019 Jan; 21(1):8. PubMed ID: 30659366
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Sodium homeostasis is preserved in a global 11β-hydroxysteroid dehydrogenase type 1 knockout mouse model.
    Christensen TH; Bailey MA; Kenyon CJ; Jensen BL; Hunter RW
    Exp Physiol; 2015 Nov; 100(11):1362-78. PubMed ID: 26337786
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Regulation and function of renal medullary cyclooxygenase-2 during high salt loading.
    Yang T; Liu M
    Front Biosci (Landmark Ed); 2017 Jan; 22(1):128-136. PubMed ID: 27814606
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Sodium Handling and Interaction in Numerous Organs.
    Minegishi S; Luft FC; Titze J; Kitada K
    Am J Hypertens; 2020 Aug; 33(8):687-694. PubMed ID: 32198504
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Animal models of hypertension: The status of nitric oxide and oxidative stress and the role of the renal medulla.
    Kuczeriszka M; Wąsowicz K
    Nitric Oxide; 2022 Aug; 125-126():40-46. PubMed ID: 35700961
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure.
    Hyndman KA; Boesen EI; Elmarakby AA; Brands MW; Huang P; Kohan DE; Pollock DM; Pollock JS
    Hypertension; 2013 Jul; 62(1):91-8. PubMed ID: 23608660
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Role of the renal medulla in volume and arterial pressure regulation.
    Cowley AW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R1-15. PubMed ID: 9249526
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Role of the kidney in the pathogenesis of hypertension: time for a neo-Guytonian paradigm or a paradigm shift?
    Evans RG; Bie P
    Am J Physiol Regul Integr Comp Physiol; 2016 Feb; 310(3):R217-29. PubMed ID: 26582636
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Salt intake, endothelial dysfunction, and salt-sensitive hypertension.
    Bragulat E; de la Sierra A
    J Clin Hypertens (Greenwich); 2002; 4(1):41-6. PubMed ID: 11821636
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effect of excessive salt intake: role of plasma sodium.
    Reuter S; Büssemaker E; Hausberg M; Pavenstädt H; Hillebrand U
    Curr Hypertens Rep; 2009 Apr; 11(2):91-7. PubMed ID: 19278597
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure?
    Sadowski J; Bądzyńska B
    Clin Exp Pharmacol Physiol; 2020 Aug; 47(8):1323-1332. PubMed ID: 32163610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.