These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 10981145)

  • 41. Activation of AP-1 through reactive oxygen species by angiotensin II in rat cardiomyocytes.
    Wu S; Gao J; Ohlemeyer C; Roos D; Niessen H; Köttgen E; Gessner R
    Free Radic Biol Med; 2005 Dec; 39(12):1601-10. PubMed ID: 16298685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species.
    Xie Z; Pimental DR; Lohan S; Vasertriger A; Pligavko C; Colucci WS; Singh K
    J Cell Physiol; 2001 Jul; 188(1):132-8. PubMed ID: 11382929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Benazepril, an angiotensin-converting enzyme inhibitor, alleviates renal injury in spontaneously hypertensive rats by inhibiting advanced glycation end-product-mediated pathways.
    Liu XP; Pang YJ; Zhu WW; Zhao TT; Zheng M; Wang YB; Sun ZJ; Sun SJ
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):287-96. PubMed ID: 19018797
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Angiotensin II receptor subtypes: selective antagonists and functional correlates.
    Timmermans PB; Smith RD
    Eur Heart J; 1994 Dec; 15 Suppl D():79-87. PubMed ID: 7713119
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension.
    Schulman IH; Zhou MS; Raij L
    J Hypertens Suppl; 2006 Mar; 24(1):S45-50. PubMed ID: 16601573
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antioxidant and nitric oxide-sparing actions of dihydropyridines and ACE inhibitors differ in human endothelial cells.
    Lob H; Rosenkranz AC; Breitenbach T; Berkels R; Drummond G; Roesen R
    Pharmacology; 2006; 76(1):8-18. PubMed ID: 16220025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways.
    Touyz RM; Schiffrin EL
    J Hypertens; 2001 Jul; 19(7):1245-54. PubMed ID: 11446714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of endothelial nitric oxide and angiotensin in the circulation.
    Toda N; Ayajiki K; Okamura T
    Pharmacol Rev; 2007 Mar; 59(1):54-87. PubMed ID: 17329548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Angiotensin II and vascular inflammation.
    Cheng ZJ; Vapaatalo H; Mervaala E
    Med Sci Monit; 2005 Jun; 11(6):RA194-205. PubMed ID: 15917731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Qian Yang Yu Yin Granule-containing serum inhibits angiotensin II-induced proliferation, reactive oxygen species production, and inflammation in human mesangial cells via an NADPH oxidase 4-dependent pathway.
    Ding K; Wang Y; Jiang W; Zhang Y; Yin H; Fang Z
    BMC Complement Altern Med; 2015 Mar; 15():81. PubMed ID: 25886843
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The renin-angiotensin system and its vasoactive metabolite angiotensin-(1-7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines.
    Pawlik MW; Kwiecien S; Ptak-Belowska A; Pajdo R; Olszanecki R; Suski M; Madej J; Targosz A; Konturek SJ; Korbut R; Brzozowski T
    J Physiol Pharmacol; 2016 Feb; 67(1):75-91. PubMed ID: 27010897
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress.
    Pueyo ME; Gonzalez W; Nicoletti A; Savoie F; Arnal JF; Michel JB
    Arterioscler Thromb Vasc Biol; 2000 Mar; 20(3):645-51. PubMed ID: 10712386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactive oxygen species-mediated homologous downregulation of angiotensin II type 1 receptor mRNA by angiotensin II.
    Ichiki T; Takeda K; Tokunou T; Funakoshi Y; Ito K; Iino N; Takeshita A
    Hypertension; 2001 Feb; 37(2 Pt 2):535-40. PubMed ID: 11230331
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators.
    Seshiah PN; Weber DS; Rocic P; Valppu L; Taniyama Y; Griendling KK
    Circ Res; 2002 Sep; 91(5):406-13. PubMed ID: 12215489
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Upregulation of cortical COX-2 in salt-sensitive hypertension: role of angiotensin II and reactive oxygen species.
    Jaimes EA; Zhou MS; Pearse DD; Puzis L; Raij L
    Am J Physiol Renal Physiol; 2008 Feb; 294(2):F385-92. PubMed ID: 18094033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Renin inhibitors, angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists: relationships between blood pressure responses and effects on the renin-angiotensin system.
    Schalekamp MA; Derkx FH; van den Meiracker AH
    J Hypertens Suppl; 1992 Dec; 10(7):S157-64. PubMed ID: 1291650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Angiotensin receptors: physiology and pharmacology.
    Guthrie GP
    Clin Cardiol; 1995 Jun; 18(6 Suppl 3):III 29-34. PubMed ID: 7634561
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neurohormonal modulation in cardiovascular disease.
    Unger T
    Am Heart J; 2000 Jan; 139(1 Pt 2):S2-8. PubMed ID: 10618581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lack of impairment of nitric oxide-mediated responses in a rat model of high-renin hypertension.
    Artigues-Varin C; Richard V; Renet S; Henry JP; Thuillez C
    Clin Exp Pharmacol Physiol; 2002; 29(1-2):26-31. PubMed ID: 11906458
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Angiotensin II stimulates MCP-1 production in rat glomerular endothelial cells via NAD(P)H oxidase-dependent nuclear factor-kappa B signaling.
    Pan Q; Yang XH; Cheng YX
    Braz J Med Biol Res; 2009 Jun; 42(6):531-6. PubMed ID: 19448902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.