BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 10981714)

  • 1. Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase.
    Reche PA; Howard MJ; Broadhurst RW; Perham RN
    FEBS Lett; 2000 Aug; 479(3):93-8. PubMed ID: 10981714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity of post-translational modification in biotinylated proteins: the carboxy carrier protein of the acetyl-CoA carboxylase of Escherichia coli.
    Reche P; Li YL; Fuller C; Eichhorn K; Perham RN
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):589-96. PubMed ID: 9445386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and selectivity in post-translational modification: attaching the biotinyl-lysine and lipoyl-lysine swinging arms in multifunctional enzymes.
    Reche P; Perham RN
    EMBO J; 1999 May; 18(10):2673-82. PubMed ID: 10329614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity in functional organization of class I and class II biotin protein ligase.
    Purushothaman S; Annamalai K; Tyagi AK; Surolia A
    PLoS One; 2011 Mar; 6(3):e16850. PubMed ID: 21390227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotinylation in the hyperthermophile Aquifex aeolicus.
    Clarke DJ; Coulson J; Baillie R; Campopiano DJ
    Eur J Biochem; 2003 Mar; 270(6):1277-87. PubMed ID: 12631286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing.
    Athappilly FK; Hendrickson WA
    Structure; 1995 Dec; 3(12):1407-19. PubMed ID: 8747466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.
    Polyak SW; Chapman-Smith A; Mulhern TD; Cronan JE; Wallace JC
    J Biol Chem; 2001 Feb; 276(5):3037-45. PubMed ID: 11042165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity.
    Chapman-Smith A; Cronan JE
    Trends Biochem Sci; 1999 Sep; 24(9):359-63. PubMed ID: 10470036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition in a post-translational modification of exceptional specificity. Mutants of the biotinylated domain of acetyl-CoA carboxylase defective in recognition by biotin protein ligase.
    Chapman-Smith A; Morris TW; Wallace JC; Cronan JE
    J Biol Chem; 1999 Jan; 274(3):1449-57. PubMed ID: 9880519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipoylating and biotinylating enzymes contain a homologous catalytic module.
    Reche PA
    Protein Sci; 2000 Oct; 9(10):1922-9. PubMed ID: 11106165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a putative lipoate protein ligase from Thermoplasma acidophilum and the mechanism of target selection for post-translational modification.
    McManus E; Luisi BF; Perham RN
    J Mol Biol; 2006 Feb; 356(3):625-37. PubMed ID: 16384580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structures of apo and holo biotinyl domains from acetyl coenzyme A carboxylase of Escherichia coli determined by triple-resonance nuclear magnetic resonance spectroscopy.
    Roberts EL; Shu N; Howard MJ; Broadhurst RW; Chapman-Smith A; Wallace JC; Morris T; Cronan JE; Perham RN
    Biochemistry; 1999 Apr; 38(16):5045-53. PubMed ID: 10213607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural determinants of post-translational modification and catalytic specificity for the lipoyl domains of the pyruvate dehydrogenase multienzyme complex of Escherichia coli.
    Jones DD; Horne HJ; Reche PA; Perham RN
    J Mol Biol; 2000 Jan; 295(2):289-306. PubMed ID: 10623527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of the lipoyl domain of the chimeric dihydrolipoyl dehydrogenase P64K from Neisseria meningitidis.
    Tozawa K; Broadhurst RW; Raine AR; Fuller C; Alvarez A; Guillen G; Padron G; Perham RN
    Eur J Biochem; 2001 Sep; 268(18):4908-17. PubMed ID: 11559360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein biotinylation visualized by a complex structure of biotin protein ligase with a substrate.
    Bagautdinov B; Matsuura Y; Bagautdinova S; Kunishima N
    J Biol Chem; 2008 May; 283(21):14739-50. PubMed ID: 18372281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biotinyl domain of Escherichia coli acetyl-CoA carboxylase. Evidence that the "thumb" structure id essential and that the domain functions as a dimer.
    Cronan JE
    J Biol Chem; 2001 Oct; 276(40):37355-64. PubMed ID: 11495922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment.
    Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA
    Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation.
    Beckett D; Kovaleva E; Schatz PJ
    Protein Sci; 1999 Apr; 8(4):921-9. PubMed ID: 10211839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis.
    Cronan JE; Reed KE
    Methods Enzymol; 2000; 326():440-58. PubMed ID: 11036657
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.