These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 10982748)

  • 1. A comparison of visual and auditory motion processing in human cerebral cortex.
    Lewis JW; Beauchamp MS; DeYoe EA
    Cereb Cortex; 2000 Sep; 10(9):873-88. PubMed ID: 10982748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of coherent audiovisual motion perception.
    Baumann O; Greenlee MW
    Cereb Cortex; 2007 Jun; 17(6):1433-43. PubMed ID: 16928890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical fMRI activation produced by attentive tracking of moving targets.
    Culham JC; Brandt SA; Cavanagh P; Kanwisher NG; Dale AM; Tootell RB
    J Neurophysiol; 1998 Nov; 80(5):2657-70. PubMed ID: 9819271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-Modal Attention Effects in the Vestibular Cortex during Attentive Tracking of Moving Objects.
    Frank SM; Sun L; Forster L; Tse PU; Greenlee MW
    J Neurosci; 2016 Dec; 36(50):12720-12728. PubMed ID: 27821579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
    Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N
    Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
    Tanabe HC; Honda M; Sadato N
    J Neurosci; 2005 Jul; 25(27):6409-18. PubMed ID: 16000632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human brain regions involved in direction discrimination.
    Cornette L; Dupont P; Rosier A; Sunaert S; Van Hecke P; Michiels J; Mortelmans L; Orban GA
    J Neurophysiol; 1998 May; 79(5):2749-65. PubMed ID: 9582242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory motion perception activates visual motion areas in early blind subjects.
    Poirier C; Collignon O; Scheiber C; Renier L; Vanlierde A; Tranduy D; Veraart C; De Volder AG
    Neuroimage; 2006 May; 31(1):279-85. PubMed ID: 16443376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity and signal intensity in the parieto-occipital cortex predicts top-down attentional effect in visual masking: an fMRI study based on individual differences.
    Tsubomi H; Ikeda T; Hanakawa T; Hirose N; Fukuyama H; Osaka N
    Neuroimage; 2009 Apr; 45(2):587-97. PubMed ID: 19103296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective attention to sound location or pitch studied with fMRI.
    Degerman A; Rinne T; Salmi J; Salonen O; Alho K
    Brain Res; 2006 Mar; 1077(1):123-34. PubMed ID: 16515772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional topography of working memory for face or voice identity.
    Rämä P; Courtney SM
    Neuroimage; 2005 Jan; 24(1):224-34. PubMed ID: 15588614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.
    Michalka SW; Rosen ML; Kong L; Shinn-Cunningham BG; Somers DC
    Cereb Cortex; 2016 Mar; 26(3):1302-1308. PubMed ID: 26656996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation.
    Dieterich M; Bense S; Stephan T; Yousry TA; Brandt T
    Exp Brain Res; 2003 Jan; 148(1):117-27. PubMed ID: 12478402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modality dependent cross-modal functional reorganization following congenital visual deprivation within occipital areas: a meta-analysis of tactile and auditory studies.
    Ricciardi E; Tozzi L; Leo A; Pietrini P
    Multisens Res; 2014; 27(3-4):247-62. PubMed ID: 25577905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study.
    Dieterich M; Bucher SF; Seelos KC; Brandt T
    Brain; 1998 Aug; 121 ( Pt 8)():1479-95. PubMed ID: 9712010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-modal binding and activated attentional networks during audio-visual speech integration: a functional MRI study.
    Saito DN; Yoshimura K; Kochiyama T; Okada T; Honda M; Sadato N
    Cereb Cortex; 2005 Nov; 15(11):1750-60. PubMed ID: 15716468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature-specific attentional priority signals in human cortex.
    Liu T; Hospadaruk L; Zhu DC; Gardner JL
    J Neurosci; 2011 Mar; 31(12):4484-95. PubMed ID: 21430149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.