These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

675 related articles for article (PubMed ID: 10982751)

  • 1. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model.
    Compte A; Brunel N; Goldman-Rakic PS; Wang XJ
    Cereb Cortex; 2000 Sep; 10(9):910-23. PubMed ID: 10982751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition.
    Brunel N; Wang XJ
    J Comput Neurosci; 2001; 11(1):63-85. PubMed ID: 11524578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex.
    Durstewitz D; Seamans JK; Sejnowski TJ
    J Neurophysiol; 2000 Mar; 83(3):1733-50. PubMed ID: 10712493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC.
    Rao SG; Williams GV; Goldman-Rakic PS
    J Neurophysiol; 1999 Apr; 81(4):1903-16. PubMed ID: 10200225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity.
    Gutkin BS; Laing CR; Colby CL; Chow CC; Ermentrout GB
    J Comput Neurosci; 2001; 11(2):121-34. PubMed ID: 11717529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory.
    Wang XJ
    J Neurosci; 1999 Nov; 19(21):9587-603. PubMed ID: 10531461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability.
    Camperi M; Wang XJ
    J Comput Neurosci; 1998 Dec; 5(4):383-405. PubMed ID: 9877021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic augmentation in a cortical circuit model reproduces serial dependence in visual working memory.
    Bliss DP; D'Esposito M
    PLoS One; 2017; 12(12):e0188927. PubMed ID: 29244810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex.
    Wang M; Yang Y; Wang CJ; Gamo NJ; Jin LE; Mazer JA; Morrison JH; Wang XJ; Arnsten AF
    Neuron; 2013 Feb; 77(4):736-49. PubMed ID: 23439125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent activity and the single-cell frequency-current curve in a cortical network model.
    Brunel N
    Network; 2000 Nov; 11(4):261-80. PubMed ID: 11128167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex.
    Hempel CM; Hartman KH; Wang XJ; Turrigiano GG; Nelson SB
    J Neurophysiol; 2000 May; 83(5):3031-41. PubMed ID: 10805698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mnemonic Encoding and Cortical Organization in Parietal and Prefrontal Cortices.
    Masse NY; Hodnefield JM; Freedman DJ
    J Neurosci; 2017 Jun; 37(25):6098-6112. PubMed ID: 28539423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational model for spatial working memory deficits in schizophrenia.
    Cano-Colino M; Compte A
    Pharmacopsychiatry; 2012 May; 45 Suppl 1():S49-56. PubMed ID: 22565235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
    Homayoun H; Moghaddam B
    J Neurosci; 2007 Oct; 27(43):11496-500. PubMed ID: 17959792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic conditions for auto-associative memory storage and pattern completion in Jensen et al.'s model of hippocampal area CA3.
    Cheu EY; Yu J; Tan CH; Tang H
    J Comput Neurosci; 2012 Dec; 33(3):435-47. PubMed ID: 22644788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "What" and "where" in visual working memory: a computational neurodynamical perspective for integrating FMRI and single-neuron data.
    Deco G; Rolls ET; Horwitz B
    J Cogn Neurosci; 2004 May; 16(4):683-701. PubMed ID: 15165356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A working memory model based on fast Hebbian learning.
    Sandberg A; Tegnér J; Lansner A
    Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory.
    van Vugt B; van Kerkoerle T; Vartak D; Roelfsema PR
    J Neurosci; 2020 Mar; 40(12):2458-2470. PubMed ID: 32051326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex.
    González-Burgos G; Krimer LS; Povysheva NV; Barrionuevo G; Lewis DA
    J Neurophysiol; 2005 Feb; 93(2):942-53. PubMed ID: 15385591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex.
    Murray JD; Bernacchia A; Roy NA; Constantinidis C; Romo R; Wang XJ
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):394-399. PubMed ID: 28028221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.