These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 10982826)
1. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase iota. Zhang Y; Yuan F; Wu X; Wang Z Mol Cell Biol; 2000 Oct; 20(19):7099-108. PubMed ID: 10982826 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analysis of base-pairing preference for nucleotide incorporation opposite template pyrimidines by human DNA polymerase iota. Choi JY; Lim S; Eoff RL; Guengerich FP J Mol Biol; 2009 Jun; 389(2):264-74. PubMed ID: 19376129 [TBL] [Abstract][Full Text] [Related]
3. Role of hoogsteen edge hydrogen bonding at template purines in nucleotide incorporation by human DNA polymerase iota. Johnson RE; Haracska L; Prakash L; Prakash S Mol Cell Biol; 2006 Sep; 26(17):6435-41. PubMed ID: 16914729 [TBL] [Abstract][Full Text] [Related]
4. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta. Hwang H; Taylor JS Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911 [TBL] [Abstract][Full Text] [Related]
5. The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. Donigan KA; McLenigan MP; Yang W; Goodman MF; Woodgate R J Biol Chem; 2014 Mar; 289(13):9136-45. PubMed ID: 24532793 [TBL] [Abstract][Full Text] [Related]
6. Biochemical evidence for the requirement of Hoogsteen base pairing for replication by human DNA polymerase iota. Johnson RE; Prakash L; Prakash S Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10466-71. PubMed ID: 16014707 [TBL] [Abstract][Full Text] [Related]
7. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase iota. Vaisman A; Frank EG; Iwai S; Ohashi E; Ohmori H; Hanaoka F; Woodgate R DNA Repair (Amst); 2003 Sep; 2(9):991-1006. PubMed ID: 12967656 [TBL] [Abstract][Full Text] [Related]
8. Response of human DNA polymerase iota to DNA lesions. Zhang Y; Yuan F; Wu X; Taylor JS; Wang Z Nucleic Acids Res; 2001 Feb; 29(4):928-35. PubMed ID: 11160925 [TBL] [Abstract][Full Text] [Related]
9. Human DNA polymerase iota utilizes different nucleotide incorporation mechanisms dependent upon the template base. Washington MT; Johnson RE; Prakash L; Prakash S Mol Cell Biol; 2004 Jan; 24(2):936-43. PubMed ID: 14701763 [TBL] [Abstract][Full Text] [Related]
10. Roles of the active site residues and metal cofactors in noncanonical base-pairing during catalysis by human DNA polymerase iota. Makarova AV; Ignatov A; Miropolskaya N; Kulbachinskiy A DNA Repair (Amst); 2014 Oct; 22():67-76. PubMed ID: 25108837 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota. Pence MG; Choi JY; Egli M; Guengerich FP J Biol Chem; 2010 Dec; 285(52):40666-72. PubMed ID: 20961860 [TBL] [Abstract][Full Text] [Related]
12. Structure of human DNA polymerase iota and the mechanism of DNA synthesis. Makarova AV; Kulbachinskiy AV Biochemistry (Mosc); 2012 Jun; 77(6):547-61. PubMed ID: 22817454 [TBL] [Abstract][Full Text] [Related]
13. How a low-fidelity DNA polymerase chooses non-Watson-Crick from Watson-Crick incorporation. Wu WJ; Su MI; Wu JL; Kumar S; Lim LH; Wang CW; Nelissen FH; Chen MC; Doreleijers JF; Wijmenga SS; Tsai MD J Am Chem Soc; 2014 Apr; 136(13):4927-37. PubMed ID: 24617852 [TBL] [Abstract][Full Text] [Related]
14. Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase iota. Kirouac KN; Ling H EMBO J; 2009 Jun; 28(11):1644-54. PubMed ID: 19440206 [TBL] [Abstract][Full Text] [Related]
15. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nair DT; Johnson RE; Prakash S; Prakash L; Aggarwal AK Nature; 2004 Jul; 430(6997):377-80. PubMed ID: 15254543 [TBL] [Abstract][Full Text] [Related]
16. DNA polymerase iota-dependent translesion replication of uracil containing cyclobutane pyrimidine dimers. Vaisman A; Takasawa K; Iwai S; Woodgate R DNA Repair (Amst); 2006 Feb; 5(2):210-8. PubMed ID: 16263340 [TBL] [Abstract][Full Text] [Related]
17. Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. Choi JY; Guengerich FP J Biol Chem; 2006 May; 281(18):12315-24. PubMed ID: 16527824 [TBL] [Abstract][Full Text] [Related]
18. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Einolf HJ; Schnetz-Boutaud N; Guengerich FP Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338 [TBL] [Abstract][Full Text] [Related]
19. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. Tissier A; Frank EG; McDonald JP; Iwai S; Hanaoka F; Woodgate R EMBO J; 2000 Oct; 19(19):5259-66. PubMed ID: 11013228 [TBL] [Abstract][Full Text] [Related]
20. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Johnson RE; Washington MT; Haracska L; Prakash S; Prakash L Nature; 2000 Aug; 406(6799):1015-9. PubMed ID: 10984059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]