These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10982888)

  • 21. Disruption of mitotic spindle orientation in a yeast dynein mutant.
    Li YY; Yeh E; Hays T; Bloom K
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10096-100. PubMed ID: 8234262
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutant allele of the transcription factor IIH helicase gene, RAD3, promotes loss of heterozygosity in response to a DNA replication defect in Saccharomyces cerevisiae.
    Navarro MS; Bi L; Bailis AM
    Genetics; 2007 Jul; 176(3):1391-402. PubMed ID: 17483411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles for the Rad27 Flap Endonuclease in Mitochondrial Mutagenesis and Double-Strand Break Repair in
    Nagarajan P; Prevost CT; Stein A; Kasimer R; Kalifa L; Sia EA
    Genetics; 2017 Jun; 206(2):843-857. PubMed ID: 28450457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Suppression of frameshift mutation as a result of partial inactivation of translation termination factors in Saccharomyces cerevisiae yeast].
    Kulikov VN; Tikhodeev ON; Forafonov FS; Borkhsenius AS; Alenin VV; Inge-Vechtomov SG
    Genetika; 2001 May; 37(5):602-9. PubMed ID: 11436550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of features of the RNase activity of 5'-exonuclease-1 and 5'-exonuclease-2 of Saccharomyces cerevisiae.
    Poole TL; Stevens A
    Nucleic Acids Symp Ser; 1995; (33):79-81. PubMed ID: 8643406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The post-replication repair RAD18 and RAD6 genes are involved in the prevention of spontaneous mutations caused by 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae.
    de Padula M; Slezak G; Auffret van Der Kemp P; Boiteux S
    Nucleic Acids Res; 2004; 32(17):5003-10. PubMed ID: 15388802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rapid and efficient one-step site-directed deletion, insertion, and substitution mutagenesis protocol.
    Wu D; Guo X; Lu J; Sun X; Li F; Chen Y; Xiao D
    Anal Biochem; 2013 Mar; 434(2):254-8. PubMed ID: 23256925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Escherichia coli mutator (Delta)polA is defective in base mismatch correction: the nature of in vivo DNA replication errors.
    Tago Y; Imai M; Ihara M; Atofuji H; Nagata Y; Yamamoto K
    J Mol Biol; 2005 Aug; 351(2):299-308. PubMed ID: 16005896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The RNA catabolic enzymes Rex4p, Rnt1p, and Dbr1p show genetic interaction with trans-acting factors involved in processing of ITS1 in Saccharomyces cerevisiae pre-rRNA.
    Faber AW; Vos JC; Vos HR; Ghazal G; Elela SA; Raué HA
    RNA; 2004 Dec; 10(12):1946-56. PubMed ID: 15525710
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo and in vitro studies of Mgs1 suggest a link between genome instability and Okazaki fragment processing.
    Kim JH; Kang YH; Kang HJ; Kim DH; Ryu GH; Kang MJ; Seo YS
    Nucleic Acids Res; 2005; 33(19):6137-50. PubMed ID: 16251400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity.
    O'Connell K; Jinks-Robertson S; Petes TD
    Genetics; 2015 Nov; 201(3):963-75. PubMed ID: 26400613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNase H2 of Saccharomyces cerevisiae is a complex of three proteins.
    Jeong HS; Backlund PS; Chen HC; Karavanov AA; Crouch RJ
    Nucleic Acids Res; 2004; 32(2):407-14. PubMed ID: 14734815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A genetic screen for top3 suppressors in Saccharomyces cerevisiae identifies SHU1, SHU2, PSY3 and CSM2: four genes involved in error-free DNA repair.
    Shor E; Weinstein J; Rothstein R
    Genetics; 2005 Mar; 169(3):1275-89. PubMed ID: 15654096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extremely Rare Polymorphisms in Saccharomyces cerevisiae Allow Inference of the Mutational Spectrum.
    Zhu YO; Sherlock G; Petrov DA
    PLoS Genet; 2017 Jan; 13(1):e1006455. PubMed ID: 28046117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RTF2 controls replication repriming and ribonucleotide excision at the replisome.
    Conti BA; Ruiz PD; Broton C; Blobel NJ; Kottemann MC; Sridhar S; Lach FP; Wiley TF; Sasi NK; Carroll T; Smogorzewska A
    Nat Commun; 2024 Mar; 15(1):1943. PubMed ID: 38431617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of repair activity by quantification of ribonucleotides in the genome.
    Iida T; Iida N; Sese J; Kobayashi T
    Genes Cells; 2021 Aug; 26(8):555-569. PubMed ID: 33993586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribonucleotide incorporation into DNA during DNA replication and its consequences.
    Zhou ZX; Williams JS; Lujan SA; Kunkel TA
    Crit Rev Biochem Mol Biol; 2021 Feb; 56(1):109-124. PubMed ID: 33461360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway.
    Zaher MS; Rashid F; Song B; Joudeh LI; Sobhy MA; Tehseen M; Hingorani MM; Hamdan SM
    Nucleic Acids Res; 2018 Apr; 46(6):2956-2974. PubMed ID: 29420814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ribonucleotides and Transcription-Associated Mutagenesis in Yeast.
    Cho JE; Jinks-Robertson S
    J Mol Biol; 2017 Oct; 429(21):3156-3167. PubMed ID: 27511624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Processing ribonucleotides incorporated during eukaryotic DNA replication.
    Williams JS; Lujan SA; Kunkel TA
    Nat Rev Mol Cell Biol; 2016 Jun; 17(6):350-63. PubMed ID: 27093943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.