These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 109833)

  • 21. Translocation of a lysosomal enzyme across the microsomal membrane requires signal recognition particle.
    Erickson AH; Walter P; Blobel G
    Biochem Biophys Res Commun; 1983 Aug; 115(1):275-80. PubMed ID: 6137219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A nascent membrane protein is located adjacent to ER membrane proteins throughout its integration and translation.
    Thrift RN; Andrews DW; Walter P; Johnson AE
    J Cell Biol; 1991 Mar; 112(5):809-21. PubMed ID: 1999459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient cleavage and segregation of nascent presecretory proteins in a reticulocyte lysate supplemented with microsomal membranes.
    Shields D; Blobel G
    J Biol Chem; 1978 Jun; 253(11):3753-6. PubMed ID: 649601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of integration of de novo-synthesized polypeptides into membranes: signal-recognition particle is required for integration into microsomal membranes of calcium ATPase and of lens MP26 but not of cytochrome b5.
    Anderson DJ; Mostov KE; Blobel G
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7249-53. PubMed ID: 6227918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: requirements for its extraction and reassociation with the membrane.
    Meyer DI; Dobberstein B
    J Cell Biol; 1980 Nov; 87(2 Pt 1):498-502. PubMed ID: 7000796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclosporin A inhibits the degradation of signal sequences after processing of presecretory proteins by signal peptidase.
    Klappa P; Dierks T; Zimmermann R
    Eur J Biochem; 1996 Jul; 239(2):509-18. PubMed ID: 8706761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteolytic processing of presecretory proteins is required for development of biological activities in pancreatic exocrine proteins.
    Scheele G; Jacoby R
    J Biol Chem; 1983 Feb; 258(3):2005-9. PubMed ID: 6337149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components.
    Blobel G; Dobberstein B
    J Cell Biol; 1975 Dec; 67(3):852-62. PubMed ID: 811672
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Association of messenger ribonucleic acid with mammalian microsomal membranes: characterization by analysis of cell-free translation products.
    Shields D
    Biochemistry; 1979 Jun; 18(12):2622-7. PubMed ID: 444481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of microsomal membranes for cotranslational protein translocation.
    Walter P; Blobel G
    Methods Enzymol; 1983; 96():84-93. PubMed ID: 6656655
    [No Abstract]   [Full Text] [Related]  

  • 31. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum.
    Walter P; Blobel G
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7112-6. PubMed ID: 6938958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The membrane proteins TRAMp and sec61 alpha p may be involved in post-translational transport of presecretory proteins into mammalian microsomes.
    Klappa P; Zimmermann M; Zimmermann R
    FEBS Lett; 1994 Mar; 341(2-3):281-7. PubMed ID: 8137954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular sorting of proteins into the cisternal secretory pathway.
    Scheele GA
    Biochimie; 1988 Sep; 70(9):1269-76. PubMed ID: 3147720
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for multiple mechanisms for membrane binding and integration via carboxyl-terminal insertion sequences.
    Kim PK; Janiak-Spens F; Trimble WS; Leber B; Andrews DW
    Biochemistry; 1997 Jul; 36(29):8873-82. PubMed ID: 9220974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of components of the ER translocation site.
    Gruss OJ; Feick P; Frank R; Dobberstein B
    Eur J Biochem; 1999 Mar; 260(3):785-93. PubMed ID: 10103008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A large presecretory protein translocates both cotranslationally, using signal recognition particle and ribosome, and post-translationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes.
    Schlenstedt G; Gudmundsson GH; Boman HG; Zimmermann R
    J Biol Chem; 1990 Aug; 265(23):13960-8. PubMed ID: 2380197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Demonstration of post-translational secretion of human placental lactogen by a mammalian in vitro translation system.
    Caulfield MP; Duong LT; Rosenblatt M
    J Biol Chem; 1986 Aug; 261(24):10953-6. PubMed ID: 3733741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of truncation of human pro-tumor necrosis factor transmembrane domain on cellular targeting.
    Utsumi T; Levitan A; Hung MC; Klostergaard J
    J Biol Chem; 1993 May; 268(13):9511-6. PubMed ID: 8486641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein translocation in the endoplasmic reticulum. Ultraviolet light induces the noncovalent association of nascent peptides with translocon proteins.
    Anderson L; Denny JB
    J Biol Chem; 1992 Nov; 267(33):23916-21. PubMed ID: 1429729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of the membrane topology of the ionotropic glutamate receptor subunit GluR1 in a cell-free system.
    Seal AJ; Collingridge GL; Henley JM
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):451-6. PubMed ID: 8526855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.