BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10983386)

  • 1. [Why is it worth to examine the biomechanical properties of cancellous bone?].
    Drozdzowska B; Szczurek Z
    Wiad Lek; 2000; 53(5-6):307-11. PubMed ID: 10983386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics.
    Cendre E; Mitton D; Roux JP; Arlot ME; Duboeuf F; Burt-Pichat B; Rumelhart C; Peix G; Meunier PJ
    Osteoporos Int; 1999; 10(5):353-60. PubMed ID: 10591832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone.
    Njeh CF; Hodgskinson R; Currey JD; Langton CM
    Med Eng Phys; 1996 Jul; 18(5):373-81. PubMed ID: 8818135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental study on the biomechanical properties of the cancellous bones of distal femur.
    Du C; Ma H; Ruo M; Zhang Z; Yu X; Zeng Y
    Biomed Mater Eng; 2006; 16(3):215-22. PubMed ID: 16518020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Prediction Method of Elastic Modulus of Trabecular Bone Based on SE-DenseVoxNet].
    Cao Y; He S; Zhou P; Li L; Bao N
    Zhongguo Yi Liao Qi Xie Za Zhi; 2021 Feb; 45(1):6-10. PubMed ID: 33522168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound study of bone in vitro.
    Antich PP
    Calcif Tissue Int; 1993; 53 Suppl 1():S157-61. PubMed ID: 8275372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflection ultrasound velocities and histomorphometric and connectivity analyses: correlations and effect of slow-release sodium fluoride.
    Zerwekh JE; Antich PP; Mehta S; Sakhaee K; Gottschalk F; Pak CY
    J Bone Miner Res; 1997 Dec; 12(12):2068-75. PubMed ID: 9421239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a customized artificial osteoporotic bone model of the distal femur.
    Wähnert D; Hoffmeier KL; Stolarczyk Y; Fröber R; Hofmann GO; Mückley T
    J Biomater Appl; 2011 Nov; 26(4):451-64. PubMed ID: 20511385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamentals of biomechanics in tissue engineering of bone.
    Athanasiou KA; Zhu C; Lanctot DR; Agrawal CM; Wang X
    Tissue Eng; 2000 Aug; 6(4):361-81. PubMed ID: 10992433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of intrinsic bone quality in vivo by reflection ultrasound: correction of impaired quality with slow-release sodium fluoride and calcium citrate.
    Antich PP; Pak CY; Gonzales J; Anderson J; Sakhaee K; Rubin C
    J Bone Miner Res; 1993 Mar; 8(3):301-11. PubMed ID: 8456586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone strength in children: understanding basic bone biomechanics.
    Forestier-Zhang L; Bishop N
    Arch Dis Child Educ Pract Ed; 2016 Feb; 101(1):2-7. PubMed ID: 26269494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Trabecular bone microarchitecture and male osteoporosis].
    Legrand E; Chappard D; Pascaretti C; Duquenne M; Rohmer V; Basle MF; Audran M
    Morphologie; 1999 Jun; 83(261):35-40. PubMed ID: 10546234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo and in vitro measurement of ultrasound velocity in cortical bone.
    Lowet G; van der Perre G
    Stud Health Technol Inform; 1997; 40():201-20. PubMed ID: 10168879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pairwise strength relationships of cortical and cancellous bone in human femur: an autopsy study.
    Alho A; Strømsøe K; Høiseth A
    Arch Orthop Trauma Surg; 1995; 114(4):211-4. PubMed ID: 7662476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease.
    Chavassieux P; Seeman E; Delmas PD
    Endocr Rev; 2007 Apr; 28(2):151-64. PubMed ID: 17200084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microarchitecture on bone strength.
    van der Linden JC; Weinans H
    Curr Osteoporos Rep; 2007 Jun; 5(2):56-61. PubMed ID: 17521506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation.
    Diamant I; Shahar R; Masharawi Y; Gefen A
    Clin Biomech (Bristol, Avon); 2007 Mar; 22(3):282-91. PubMed ID: 17134802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis.
    Nazarian A; von Stechow D; Zurakowski D; Müller R; Snyder BD
    Calcif Tissue Int; 2008 Dec; 83(6):368-79. PubMed ID: 18946628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelet decomposition of transmitted ultrasound wave through a 1-D muscle-bone system.
    Buchanan JL; Gilbert RP; Ou MJ
    J Biomech; 2011 Jan; 44(2):352-8. PubMed ID: 21092969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests.
    Haidekker MA; Andresen R; Werner HJ
    Osteoporos Int; 1999; 9(5):433-40. PubMed ID: 10550463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.