These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10983964)

  • 21. The effect of subglottal resonance upon vocal fold vibration.
    Austin SF; Titze IR
    J Voice; 1997 Dec; 11(4):391-402. PubMed ID: 9422272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noninvasive measurement of traveling wave velocity in the canine larynx.
    Nasri S; Sercarz JA; Berke GS
    Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):758-66. PubMed ID: 7944166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental study of the effects of surface mucus viscosity on the glottic cycle.
    Ayache S; Ouaknine M; Dejonkere P; Prindere P; Giovanni A
    J Voice; 2004 Mar; 18(1):107-15. PubMed ID: 15070230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of mucosal wave propagation and vertical phase difference in vocal fold vibration.
    Titze IR; Jiang JJ; Hsiao TY
    Ann Otol Rhinol Laryngol; 1993 Jan; 102(1 Pt 1):58-63. PubMed ID: 8420470
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathogenesis of vocal fold nodules: new insights from a modelling approach.
    Dejonckere PH; Kob M
    Folia Phoniatr Logop; 2009; 61(3):171-9. PubMed ID: 19571551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new generation videokymography for routine clinical vocal fold examination.
    Qiu Q; Schutte HK
    Laryngoscope; 2006 Oct; 116(10):1824-8. PubMed ID: 17003719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Objective detection and quantification of mucosal wave propagation.
    Voigt D; Döllinger M; Eysholdt U; Yang A; Gürlek E; Lohscheller J
    J Acoust Soc Am; 2010 Nov; 128(5):EL347-53. PubMed ID: 21110550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the relation between subglottal pressure and fundamental frequency in phonation.
    Titze IR
    J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerodynamics of the human larynx during vocal fold vibration.
    Plant RL
    Laryngoscope; 2005 Dec; 115(12):2087-100. PubMed ID: 16369149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mucosal wave measurement and visualization techniques.
    Krausert CR; Olszewski AE; Taylor LN; McMurray JS; Dailey SH; Jiang JJ
    J Voice; 2011 Jul; 25(4):395-405. PubMed ID: 20471798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracheal view of vocal fold vibration in excised canine larynxes.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1993 Jan; 119(1):73-8. PubMed ID: 8417748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gradation of stiffness of the mucosa inferior to the vocal fold.
    Goodyer E; Gunderson M; Dailey SH
    J Voice; 2010 May; 24(3):359-62. PubMed ID: 19303741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging.
    Tsai CG; Shau YW; Liu HM; Hsiao TY
    J Voice; 2008 May; 22(3):275-82. PubMed ID: 17509826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voice function following CO2 laser microsurgery for precancerous and early-stage glottic carcinoma.
    Xu W; Han D; Hou L; Zhang L; Yu Z; Huang Z
    Acta Otolaryngol; 2007 Jun; 127(6):637-41. PubMed ID: 17503234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the relation between the phonation threshold lung pressure and the oscillation frequency of the vocal folds.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2007 Jun; 121(6):3280-3. PubMed ID: 17552679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of epilarynx area on vocal fold dynamics.
    Döllinger M; Berry DA; Montequin DW
    Otolaryngol Head Neck Surg; 2006 Nov; 135(5):724-729. PubMed ID: 17071302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pliability of the vocal fold mucosa in relation to the mucosal upheaval during phonation.
    Yumoto E; Kadota Y
    Arch Otolaryngol Head Neck Surg; 1998 Aug; 124(8):897-902. PubMed ID: 9708716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.