These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 10984125)
1. Interphase cytogenetics of bladder cancer progression: relationship between aneusomy, DNA ploidy pattern, histopathology, and clinical outcome. Cianciulli AM; Bovani R; Leonardo F; Antenucci A; Gandolfo GM; Giannarelli D; Leonardo C; Iori F; Laurenti C Int J Clin Lab Res; 2000; 30(1):5-11. PubMed ID: 10984125 [TBL] [Abstract][Full Text] [Related]
2. DNA aberrations in urinary bladder cancer detected by flow cytometry and FISH: prognostic implications. Cianciulli AM; Bovani R; Leonardo C; Iori F; Coletta AM; Marzano R; Antenucci A; Gandolfo GM; Laurenti C Eur J Histochem; 2001; 45(1):65-71. PubMed ID: 11411867 [TBL] [Abstract][Full Text] [Related]
3. Aneusomy of chromosomes 7 and 17 predicts the recurrence of transitional cell carcinoma of the urinary bladder. Watters AD; Ballantyne SA; Going JJ; Grigor KM; Bartlett JM BJU Int; 2000 Jan; 85(1):42-7. PubMed ID: 10619944 [TBL] [Abstract][Full Text] [Related]
4. Genomic heterogeneity in bladder cancer as detected by fluorescence in situ hybridization. Yokogi H; Wada Y; Moriyama-Gonda N; Igawa M; Ishibe T Br J Urol; 1996 Nov; 78(5):699-703. PubMed ID: 8976763 [TBL] [Abstract][Full Text] [Related]
5. DNA aberrations in urinary bladder cancer detected by flow cytometry and FISH. Sauter G; Gasser TC; Moch H; Richter J; Jiang F; Albrecht R; Novotny H; Wagner U; Bubendorf L; Mihatsch MJ Urol Res; 1997; 25 Suppl 1():S37-43. PubMed ID: 9079755 [TBL] [Abstract][Full Text] [Related]
6. Fluorescence in situ hybridization identifies more aggressive types of primarily noninvasive (stage pTa) bladder cancer. Pycha A; Mian C; Haitel A; Hofbauer J; Wiener H; Marberger M J Urol; 1997 Jun; 157(6):2116-9. PubMed ID: 9146595 [TBL] [Abstract][Full Text] [Related]
7. [Detection of urothelial carcinoma of the urinary bladder by multicolor fluorescence in situ hybridization]. Zhang YG; Bi XG; Han YL; Cai Y; Xu X; Wu YP; Yang YL; Ma JH; Zhao P; Jia XM; Wang MR Ai Zheng; 2007 Feb; 26(2):189-93. PubMed ID: 17298751 [TBL] [Abstract][Full Text] [Related]
9. Chromosomal aberrations in transitional cell carcinoma: its correlation with tumor behavior. Yu DS; Chen HI; Chang SY Urol Int; 2002; 69(2):129-35. PubMed ID: 12187044 [TBL] [Abstract][Full Text] [Related]
10. Polysomies but not Y chromosome losses have prognostic significance in pTa/pT1 urinary bladder cancer. Neuhaus M; Wagner U; Schmid U; Ackermann D; Zellweger T; Maurer R; Alund G; Knönagel H; Rist M; Moch H; Mihatsch MJ; Gasser TC; Sauter G Hum Pathol; 1999 Jan; 30(1):81-6. PubMed ID: 9923932 [TBL] [Abstract][Full Text] [Related]
11. [The relationships among DNA ploidy type determined by laser scanning cytometry, the overexpression of p53 protein and the numerical aberrations of chromosome 7 in bladder cancer]. Kawamura K; Ikeda R; Suzuki K Hinyokika Kiyo; 2000 Jun; 46(6):377-83. PubMed ID: 10934605 [TBL] [Abstract][Full Text] [Related]
12. Fluorescent in situ hybridization as a predictor of relapse in urothelial carcinoma. García-Peláez B; Trias I; Román R; Pubill C; Banús JM; Puig X Actas Urol Esp; 2013; 37(7):395-400. PubMed ID: 23453297 [TBL] [Abstract][Full Text] [Related]
13. Is chromosome 9 loss a marker of disease recurrence in transitional cell carcinoma of the urinary bladder? Bartlett JM; Watters AD; Ballantyne SA; Going JJ; Grigor KM; Cooke TG Br J Cancer; 1998 Jun; 77(12):2193-8. PubMed ID: 9649132 [TBL] [Abstract][Full Text] [Related]
14. Chromosome 9 aberrations by fluorescence in situ hybridisation in bladder transitional cell carcinoma. Eleuteri P; Grollino MG; Pomponi D; De Vita R Eur J Cancer; 2001 Aug; 37(12):1496-503. PubMed ID: 11506956 [TBL] [Abstract][Full Text] [Related]
15. DNA ploidy as a prognostic factor in muscle invasive transitional cell carcinoma of the bladder. Deliveliotis C; Georgoulakis J; Skolarikos A; Trakas N; Varkarakis J; Albanis S; Protogerou B; Bamias A Urol Res; 2005 Feb; 33(1):39-43. PubMed ID: 15258707 [TBL] [Abstract][Full Text] [Related]
16. Numerical aberrations of chromosomes 7, 9 and 17 in squamous cell and transitional cell cancer of the bladder: a comparative study performed by fluorescence in situ hybridization. Pycha A; Mian C; Posch B; Haitel A; El-Baz M; Ghoneim MA; Marberger M J Urol; 1998 Sep; 160(3 Pt 1):737-40. PubMed ID: 9720535 [TBL] [Abstract][Full Text] [Related]
17. Genetic aberrations of c-myc and CCND1 in the development of invasive bladder cancer. Watters AD; Latif Z; Forsyth A; Dunn I; Underwood MA; Grigor KM; Bartlett JM Br J Cancer; 2002 Sep; 87(6):654-8. PubMed ID: 12237776 [TBL] [Abstract][Full Text] [Related]
18. Bladder irrigation specimens assayed by fluorescence in situ hybridization to interphase nuclei. Wheeless LL; Reeder JE; Han R; O'Connell MJ; Frank IN; Cockett AT; Hopman AH Cytometry; 1994 Dec; 17(4):319-26. PubMed ID: 7875039 [TBL] [Abstract][Full Text] [Related]
19. Sex chromosome abnormalities in bladder cancer: Y polysomies are linked to PT1-grade III transitional cell carcinoma. Panani AD; Roussos C Anticancer Res; 2006; 26(1A):319-23. PubMed ID: 16475713 [TBL] [Abstract][Full Text] [Related]
20. Centrosome hyperamplification predicts progression and tumor recurrence in bladder cancer. Yamamoto Y; Matsuyama H; Furuya T; Oga A; Yoshihiro S; Okuda M; Kawauchi S; Sasaki K; Naito K Clin Cancer Res; 2004 Oct; 10(19):6449-55. PubMed ID: 15475431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]