BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10984148)

  • 1. Heat stability of buttermilk.
    O'Connell JE; Fox PF
    J Dairy Sci; 2000 Aug; 83(8):1728-32. PubMed ID: 10984148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The two-stage coagulation of milk proteins in the minimum of the heat coagulation time-pH profile of milk: effect of casein micelle size.
    O'Connell JE; Fox PF
    J Dairy Sci; 2000 Mar; 83(3):378-86. PubMed ID: 10750091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of buttermilk made from creams with different heat treatment histories on properties of rennet gels and model cheeses.
    Morin P; Pouliot Y; Britten M
    J Dairy Sci; 2008 Mar; 91(3):871-82. PubMed ID: 18292242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing effects on physicochemical properties of creams formulated with modified milk fat.
    Bolling JC; Duncan SE; Eigel WN; Waterman KM
    J Dairy Sci; 2005 Apr; 88(4):1342-51. PubMed ID: 15778301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional and functional properties of buttermilk: a comparison between sweet, sour, and whey buttermilk.
    Sodini I; Morin P; Olabi A; Jiménez-Flores R
    J Dairy Sci; 2006 Feb; 89(2):525-36. PubMed ID: 16428621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the heat stability profiles of concentrated milk and milk ingredients using high resolution ultrasonic spectroscopy.
    Lehmann L; Buckin V
    J Dairy Sci; 2005 Sep; 88(9):3121-9. PubMed ID: 16107401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of transglutaminase on the heat stability of milk: a possible mechanism.
    Osullivan MM; Kelly AL; Fox PF
    J Dairy Sci; 2002 Jan; 85(1):1-7. PubMed ID: 11860101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short communication: influence of transglutaminase on the heat stability of milk.
    O'Sullivan MM; Lorenzen PC; O'Connell JE; Kelly AL; Schlimme E; Fox PF
    J Dairy Sci; 2001 Jun; 84(6):1331-4. PubMed ID: 11417689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-Dependent behaviour of soluble protein aggregates formed during heat-treatment of milk at pH 6.5 or 7.2.
    Renan M; Mekmene O; Famelart MH; Guyomarc'h F; Arnoult-Delest V; Pâquet D; Brulé G
    J Dairy Res; 2006 Feb; 73(1):79-86. PubMed ID: 16433965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermocalcic aggregation of milk fat globule membrane fragments from acid buttermilk cheese whey.
    Rombaut R; Dewettinck K
    J Dairy Sci; 2007 Jun; 90(6):2665-74. PubMed ID: 17517706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heat and high hydrostatic pressure treatments on disulfide bonding interchanges among the proteins in skim milk.
    Patel HA; Singh H; Anema SG; Creamer LK
    J Agric Food Chem; 2006 May; 54(9):3409-20. PubMed ID: 16637702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of milk protein concentrates with modified calcium content on enteral dairy beverage formulations: Physicochemical properties.
    Pandalaneni K; Amamcharla JK; Marella C; Metzger LE
    J Dairy Sci; 2018 Nov; 101(11):9714-9724. PubMed ID: 30172397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of kappa-casein in the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.
    Anema SG
    J Agric Food Chem; 2007 May; 55(9):3635-42. PubMed ID: 17417865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical properties of cream reformulated with fractionated milk fat and milk-derived components.
    Scott LL; Duncan SE; Sumner SS; Waterman KM
    J Dairy Sci; 2003 Nov; 86(11):3395-404. PubMed ID: 14672168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of detailed milk protein composition and coagulation properties in Simmental cattle.
    Bonfatti V; Cecchinato A; Gallo L; Blasco A; Carnier P
    J Dairy Sci; 2011 Oct; 94(10):5183-93. PubMed ID: 21943768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine beta-lactoglobulin and kappa-casein.
    Lowe EK; Anema SG; Bienvenue A; Boland MJ; Creamer LK; Jiménez-Flores R
    J Agric Food Chem; 2004 Dec; 52(25):7669-80. PubMed ID: 15675819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat stability of milk supplemented with calcium chloride.
    On-Nom N; Grandison AS; Lewis MJ
    J Dairy Sci; 2012 Apr; 95(4):1623-31. PubMed ID: 22459810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the heat stability of fresh milk protein concentrates obtained by microfiltration, ultrafiltration and diafiltration.
    Renhe IRT; Zhao Z; Corredig M
    J Dairy Res; 2019 Aug; 86(3):347-353. PubMed ID: 31298166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of ionic calcium, pH, and soluble divalent cations in milk at high temperature.
    On-Nom N; Grandison AS; Lewis MJ
    J Dairy Sci; 2010 Feb; 93(2):515-23. PubMed ID: 20105523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On heating milk, the dissociation of kappa-casein from the casein micelles can precede interactions with the denatured whey proteins.
    Anema SG
    J Dairy Res; 2008 Nov; 75(4):415-21. PubMed ID: 18701003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.